
DIVISIONE EXPLORATION & PRODUCTION

ESP

Esplorazione Italia - ESIT

PERMESSO DI RICERCA B.R263.ET RELAZIONE TECNICA ALLEGATA ALL'ISTANZA DI PRIMO PERIODO DI PROROGA

Settembre 2005

1

1

4

1

1

3

3

1

Ī [

1

Ī

1

Ī

3

미

<u>.</u>

9

7

PERMESSO DI RICERCA B.R263.ET

RELAZIONE TECNICA ALLEGATA ALL'ISTANZA DI PRIMO PERIODO DI PROROGA DEL PERMESSO B.R263.ET

> Marcello Simoncelli Exploration Project Manager

Rel. ESIT n° 19/2005 San Donato Milanese, 16.09.2005

INDICE

1 -	Situazione legale del titolo	1	Pag.	3
2 -	Inquadramento geologico	Carter Control	Pag.	4
3 -	Attività pregressa		Pag.	7
	3.1 Geofisica		Pag.	7
	3.2 Perforazione		Pag.	7
4 -	Obiettivi minerari	1	Pag.	8
	4.1 Tema gas	,	Pag.	8
	4.2 Tema olio	F	Pag.	8
5 -	Interpretazione sismica	F	Pag.	9
	5.1 Pliocene	F	Pag.	9
	5.2 Messiniano – Lias	F	Pag.	10
6 -	Conversione in profondità	F	Pag.	14
7 -	Conclusioni	F	Pag.	17

FIGURE

Fig. 1	B.R263.ET Carta indice
Fig. 2	Schema dei rapporti stratigrafici
Fig. 3	Linea BR 221-19 FN regionale
Fig. 4	Linea sismica BR 221-19 FN Prospect Silvia
Fig. 5	Mappa isobate orizzonte intralias
Fig. 6	Manna indice B R263 ET dono rilascio d'area

١

1

Ţ

Ĭ

Ī

Ţ

Ţ

1

Ĭ

Ī

Ì

Ī

.

1

[]

3

1

ij

1 - SITUAZIONE LEGALE DEL TITOLO

Il permesso B.R263.ET è ubicato nell'Adriatico centro-meridionale (Fig.1), nell'offshore di Ortona.

La situazione legale è la seguente:

Ī

17

1

1

Ţ

Ĭ

1

Ţ

Ì

Ĭ

Ì

1

Ī

1

1

I

1

4

Permesso	B.R263.ET	
Titolarità	ENI 100% op.	
Ubicazione	Mare Adriatico Zona "B"	
U.N.M.I.G	Roma	
Superficie	464,66 kmq	
Data conferimento	26.11.1999	
Scadenza obblighi geofisici	31.12.2000	
Scadenza obbligo di perforazione	30.06.2005 *	
Scadenza 1º periodo di vigenza	26.11.2005	

* Scadenza obbligo di perforazione prevista dal decreto di conferimento 31.12.2002 successivamente richiesta la proroga fino al 26.11.2005

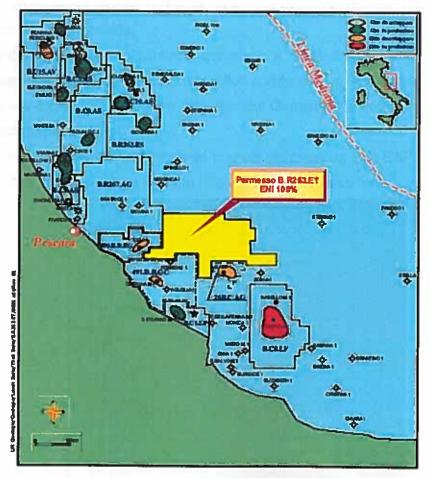


Fig.1 B.R263.ET Carta indice

2 - INQUADRAMENTO GEOLOGICO

ī

ī

ũ

Ī

ĬĬ

Įį

į į

1

Ţ

Ī

Ū.

Ī

Ī

Ī

Ĺ

녴

4

刂

4

7

L'area in esame è situata nel settore centro-meridionale del Bacino Ancona-Pescara che rappresenta una porzione dell'avanfossa appenninica pliocenica limitata ad ovest dalle falde della catena appenninica e a sud dalla piattaforma Apulo-Garganica.

All'inizio del Pliocene, quando l'avampaese comincia a risentire dell'avanzamento dei fronti appenninici, l'area subisce un basculamento verso ovest ed evolve a condizioni d'avanfossa. I sedimenti plio-pleistocenici, prevalentemente torbiditici, derivanti dallo smantellamento della catena appenninica, raggiungono localmente uno spessore di alcuni chilometri.

La discordanza della serie clastica pliocenica sul substrato è netta e facilmente identificabile in tutta l'area. Anche la serie pre-pliocenica è ben conosciuta da dati di pozzo e di letteratura.

Durante il Lias inferiore si ha la crescita di un'estesa e spessa piattaforma carbonatica; con il Lias medio si perde questa uniformità fisiografica e si individua una zona settentrionale con sedimentazione pelagica (Serie Umbro-marchigiana) ed una meridionale dove continua la sedimentazione di piattaforma carbonatica poco profonda fino al Cretaceo inferiore.

L'area paleogeografica di raccordo tra piattaforma persistente a sud e bacino a nord registra una sedimentazione di pendio caratterizzata da depositi torbiditici e debris flow, legati sia ad esportazione da una piattaforma in crescita sia a frane lungo i bordi della piattaforma causate da attività tettonica sinsedimentaria.

L'assetto strutturale nel Bacino Umbro-Marchigiano è molto articolato: si distinguono zone di paleoalto caratterizzate da una serie stratigrafica condensata e lacunosa e zone ribassate con serie più spessa e completa. A partire dalla fine del Giurassico la sedimentazione evolve verso condizioni bacinali più uniformi.

Di seguito vengono descritte le formazioni o unità utilizzate da ENI E&P che costituiscono la serie stratigrafica del titolo e aree limitrofe (Fig.2), dal basso verso l'alto.

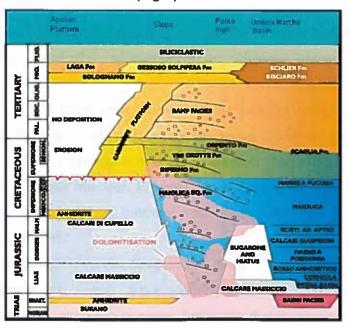


Fig.2 Schema dei rapporti stratigrafici

- Burano (Trias sup.): potente serie evaporitica con intercalazioni di calcari marnosi, dolomie nerastre ed argille di ambiente euxinico. Lo spessore può raggiungere i 2000 m.
- **Dolomie di Castelmanfrino** (Lias inf.- Lias m. p.p.): dolomie stratificate, localmente calcari dolomitici; presenti sottili livelli di selce. Con questo termine si indica il Calcare Massiccio e parte della soprastante Corniola in facies dolomitica. Spessore: più di 1000 m.
- Calcare Massiccio (Lias inf.): Calcari e calcari dolomitici di piattaforma aperta poco profonda.
 Lo spessore può raggiungere i 1000 m.
- Corniola (Lias medio): calcari compatti con liste e noduli di selce, ben stratificati, con sottili intercalazioni marnose. Ambiente di deposizione: pelagico. Lo spessore medio è di circa 250 m.
- Rosso Ammonitico (Lias sup. p.p.): calcari marnosi e marne di colore rosso o verdastro.
 Ambiente di deposizione: pelagico, con possibili episodi di depositi di pendio; possono essere presenti strutture sedimentarie connesse con la base d'onda (ripples simmetrici e hummocky).
 Lo spessore è di circa 100 m.
- Scisti e Calcari ad Aptici (Lias sup. p.p. Malm p.p.): questa denominazione è stata utilizzata da diversi autori per indicare la successione pelagica che si sviluppa sopra il Rosso Ammonitico e sottostante alla Maiolica: essa comprende le formazioni dei Calcari a Posidonia Alpina, Calcari Diasprigni e Calcari a Saccocoma ed Aptici. Calcari silicei a grana fine, compatti e sottilmente stratificati; presenti noduli e lenti di selce. Ambiente di deposizione: pelagico. Lo spessore è compreso tra 200 e 400 m.
- Le formazioni Corniola, Rosso Ammonitico e Scisti e Calcari ad Aptici possono essere estremamente condensate e vengono riunite nella Formazione Bugarone.
- Maiolica (Titonico Cretaceo inf. p.p.): calcari compatti a grana finissima di colore grigio chiaro,
 ben stratificati con abbondanti noduli e liste di selce. Ambiente di deposizione: pelagico. Lo spessore varia tra i 300-400 m.
- Scisti e Marne a Fucoidi (Aptiano Albiano): marne più o meno calcaree con presenza di selce, di colore grigio verdastro. Ambiente di deposizione: pelagico. Lo spessore può raggiungere i 100 m.
- Scaglia s.I. (Cretaceo sup. Oligocene): comprende la Scaglia cretaceo
 – eocenica (Scaglia Bianca, Scaglia Rossa, Scaglia Variegata), prevalentemente calcarea, e la Scaglia cinerea. La prima è costituita da calcari compatti o finemente detritici, con noduli e livelli di selce ed intercalazioni di marne e calcari marnosi; lo spessore è variabile intorno ai 400 m. La Scaglia cinerea è costituita da calcari, calcari marnosi sottilmente stratificati e marne grigiastre. Lo spessore varia intorno ai 200 m.
 - Ambiente di deposizione: pelagico con locali episodi di talus.

4

Ī

更

更

重

9

• **Bisciaro/Schlier** (Miocene inf. - sup. p.p.): calcari e calcari marnosi ben stratificati con intercalazioni di marne siltose; presenza di selce. Ambiente di deposizione: batiale superiore. Lo spessore raggiunge i 600 m. Verso Sud passa in eteropia alla Formazione Bolognano.

Bolognano (Miocene inf.- sup. p.p.): si distinguono due membri, inferiore e superiore, prevalentemente calcarei, separati da un membro intermedio calcareo-marnoso/marnoso (Marne di Orte). Il primo (Calcari a Briozoi) è costituito da calcareniti a grana medio - grossa ben stratificate. Il secondo (Calcari a Litotamni) è costituito da calcari organogeni, calcareniti e calcari brecciati. Ambiente di deposizione: rampa carbonatica di acque basse. Lo spessore può arrivare fino a 300 m.

I

.

J

4

4

I

- Gessoso-Solfifera (Messiniano p.p.): complesso evaporitico costituito da gessi, anidridi, gessareniti, marne e calcari. Ambiente di deposizione: neritico di piattaforma poco profonda. Lo spessore nella zona in esame è molto variabile da punto a punto, da qualche decina a pochi metri.
- Calcari di Letto (Messiniano p.p): calcari, calcari argillosi e marne di ambiente neritico; lo spessore è di poche decine di metri.
- Serie clastica pliocenica: alternanza di sabbie ed argille marnose. Lo spessore della serie è estremamente variabile in funzione della tettonica (può raggiungere diverse migliaia di metri). Ambiente di deposizione: epibatiale neritico.
- Serie clastica quaternaria: argille, argille siltose, sabbie e conglomerati. Ambiente di deposizione: neritico deltaico.

3 - ATTIVITÀ PREGRESSA

Nell'area attualmente occupata dal permesso B.R263.ET sono stati acquisiti nel corso degli anni 5 rilievi sismici:

Rilievo BR125(LF): 393 km acquisiti nel 1976 nel permesso B.R125.LF; parte del rilievo

interessa il settore sud-occidentale dell'area del permesso.

Rilievo BR76 : 706 km acquisiti nel 1976; parte del rilievo interessa il settore meridionale

dell'area del permesso, ovvero l'area che faceva parte del titolo

B.R137.AG.

Rilievo B79 : 585 km acquisiti nel 1979 nel titolo B.R160.AG; parte del rilievo interessa

quindi il settore settentrionale dell'area del permesso.

Rilievo B83 : 1647 km acquisiti nel 1983; parte del rilievo interessa il settore meridionale

del permesso, ovvero l'area che faceva parte del titolo B.R137.AG.

Rilievo BR221(FN): 302 km acquisiti nel 1989 ed ottenuti tramite uno scambio di dati sismici

con la J.V. del permesso B.R221.Fl.

La J.V. che inizialmente aveva la titolarità del premesso (ENT 50% op. e ENI 50%) ha costituito, nell'attuale periodo di vigenza del titolo, un "data base" sismico comune composto da 14 linee sismiche del rilievo B79, per un totale di 210 Km, e due linee sismiche del rilievo BR221, per un totale di 35 Km; queste ultime due linee permettono di calibrare il grid sismico ai pozzi Rombo mare 1 e Katia 1.

Per adempiere agli obblighi geofisici, Enterprise, in qualità di operatore, ha effettuato nel 2000 un reprocessing test + PSDM sulle due linee BR221 04 e 14.

3.2 - Perforazione

Nell'area del Permesso non sono mai state effettuati sondaggi esplorativi. Saranno eseguiti entro i termini del differimento richiesto (26.11.2005) i rilievi preliminari del fondale marino per la successiva perforazione del pozzo Silvia 1 con obiettivo alla serie carbonatica liassica. La profondità prevista è di 5900 m. I risultati del sondaggio saranno di fondamentale importanza per la ricerca ad olio nell'intero bacino dell' Adriatico centro meridionale. Un risultato positivo del pozzo aprirebbe infatti la strada alla perforazione di altre strutture presenti sia nel titolo che nelle aree limitrofe.

4 - OBIETTIVI MINERARI

4.1 - Tema gas

Il tema a gas è stato perseguito nella serie plio-pleistocenica sia in trappole strutturali che stratigrafiche.

A nord di quest'area si trovano numerosi campi a gas biogenico (Fratello, Squalo, Giovanna, Emma W), i cui reservoir sono costituiti da sabbie e/o silt di origine torbiditica alternati ad argille. Ritrovamenti a gas sono presenti anche a sud, nella serie pliocenica sovrastante la Piattaforma Apula, e precisamente nel giacimento di Santo Stefano Mare e nel pozzo Ombrina 1.

4.2 - Tema olio

9

 \mathbf{II}

y)

4

Gli studi geochimici hanno evidenziato che gli oli rinvenuti nei pozzi in queste aree (Rospo Mare, Ombrina Mare 1, Elsa 1, Miglianico 1) provengono da una roccia madre deposta in un ambiente carbonatico riducente particolarmente ristretto (lagune) e da una materia organica con un contributo dominante di tipo terrestre. E' stato riconosciuto un evento anossico principale, del Triassico superiore-Lias inferiore, caratterizzato da litologia carbonatica, nell'ambito del quale sono state individuate differenze legate all'ambiente di deposizione della roccia madre; le differenti composizioni evidenziate fra gli oli del Bacino di Pescara e quelli scoperti nell'area della "piattaforma Apulo-Garganica" potrebbere quindi essere riconducibili a variazioni della roccia madre.

La distribuzione areale della "source rock", è abbastanza discontinua e legata al verificarsi di particolari condizioni deposizionali. In questa porzione del Bacino di Pescara la roccia madre ha raggiunto le condizioni per la generazione di idrocarburi liquidi solo durante gli ultimi 5-6 milioni di anni; l'espulsione degli idrocarburi generati è avvenuta in due fasi distinte: la prima nel Pliocene medio superiore da una roccia madre poco matura, la seconda, più recente (Pleistocene), da una roccia madre ad elevata maturità.

2 St Birri cent

5 - INTERPRETAZIONE SISMICA

L'interpretazione sismica del permesso aveva come obiettivo principale la ricerca di possibili target mineralizzati ad olio nella serie carbonatico-marnosa che si è sedimentata tra il Giurassico ed il Miocene e, secondariamente, di eventuali target mineralizzati a gas nella serie clastica pliocenica.

5.1 - Pliocene

Ĩ.

Ĩ.

Ĭ

Ĭ

Į.

Q

Ĭ

Ī

4

4

9

Per quanto riguarda la serie clastica pliocenica sono stati interpretati i seguenti orizzonti:

Livello "Cineriti" – Near Top Pliocene medio

Top Pliocene inferiore

<u>Livello "Cineriti" – Near Top Pliocene medio :</u> questo orizzonte rappresenta un livello marker ben riconoscibile in tutta l'area del Bacino di Pescara e viene per questo utilizzato come riferimento primario nella serie clastica; è rappresentato da un riflettore continuo, marcato da una forte anomalia di ampiezza litologica ed è strutturalmente quasi del tutto indisturbato.

L'interpretazione sismica ha permesso di realizzare una mappa in isocrone, successivamente convertita in profondità, nella quale è possibile osservare l'andamento a monoclinale che immerge a nord-est; non si evidenziano pertanto assetti strutturali di interesse minerario.

La conversione in profondità determina una rotazione verso nord dell'asse di immersione della monoclinale.

Top Pliocene inferiore: Geometricamente, questo livello presenta un assetto diverso rispetto alla serie del Pliocene medio in quanto tende ad uniformarsi all'unconformity messiniana sottostante, sulla quale si rastrema verso sud; l'assetto strutturale di questo orizzonte è rappresentato da una monoclinale che immerge verso nord-ovest in direzione del depocentro del Bacino di Pescara.

Le caratteristiche del segnale non sono molto definite; anche la presenza di un possibile reservoir a livelli sottili nella parte alta del Pliocene inferiore, recentemente ipotizzato, non ha trovato elementi incoraggianti nell'ultima interpretazione sismica del permesso che ha evidenziato la ridotta potenza della serie, la mancanza di qualsiasi anomalia significativa e quindi il suo scarso interesse minerario.

Nella sequenza pliocenica non è stato quindi possibile individuare la presenza di trappole strutturali o di anomalie di ampiezza associabili a presenza di gas di interesse minerario.

Si ritiene pertanto che al momento non esistano possibili obiettivi tali da giustificare un approfondimento della ricerca nella serie clastica.

23

5.2 - Messiniano - Lias

L'interpretazione sismica è stata effettuata sui seguenti orizzonti:

- -Top Messiniano
- -Top Marne a Fucoidi
- -Top Biozona a Calpionelle
- Intra Lias

<u>Top Messiniano:</u> questo orizzonte rappresenta l'elemento sommitale della sequenza prevalentemente calcareo-marnosa Mesozoico-Terziaria e ne chiude il ciclo con depositi di natura prevalentemente evaporitica.

Risulta facilmente individuabile, essendo determinato da un marcato aumento della velocità sismica che si esplica in un forte segnale a bassa frequenza costituito da una tripletta piccogola-picco.

L'interpretazione ha evidenziato, per questo orizzonte, un assetto strutturale delle isocrone costituito da una monoclinale che immerge in direzione nord-ovest, in relazione al basculamento dell'intera serie pre-pliocenica al di sotto dell'orogene appenninico.

La conversione in profondità determina, a causa delle geometrie e delle caratteristiche di velocità della serie terrigena soprastante, una rotazione verso ovest dell'asse di immersione della monoclinale come risulta evidente dalla mappa in isobate.

<u>Top Marne a Fucoidi:</u> il secondo orizzonte interpretato costituisce un marker significativo sia a livello stratigrafico, rappresentando il top del Cretaceo inferiore, che a livello sismico poiché è determinato da una diminuzione di velocità facilmente individuabile a livello regionale che si esplica con un picco continuo.

Anche per questo orizzonte le isocrone presentano un assetto strutturale estremamente semplice costituito da una monoclinale immergente a nord-ovest, verso il depocentro del bacino di Pescara, nella porzione occidentale del permesso ed immergente a nord nella parte centro-orientale. Come per l'orizzonte sovrastante non sono evidenziabili elementi strutturali che possano favorire l'accumulo di idrocarburi.

La conversione in profondità evidenzia una rotazione verso ovest dell'asse di immersione della monoclinale nella parte occidentale ed una leggera rotazione verso est nella porzione nordorientale del permesso.

<u>Top Biozona a Calpionelle</u>: questo orizzonte, a differenza dei due precedenti, non presenta un carattere sismico significativo, ed è stato interpretato sul flesso che sta alla base di una gola corrispondente ad un aumento di velocità sismica: tuttavia riveste notevole importanza sia dal punto di vista stratigrafico che strutturale.

Dal punto di vista stratigrafico la Biozona a Calpionelle ci permette di correlare agevolmente i tre pozzi profondi perforati nell'area: Silvana 1, Spinello 1 ed Elsa 1.

Dal punto di vista strutturale questo livello risulta essere il primo marker continuo significativo situato poco al di sopra di una sequenza carbonatica interessata da episodi di risedimentazione

di massa e che ha mostrato di avere buone caratteristiche di reservoir nel pozzo Elsa 1 (e Miglianico 1).

1

ij

1

41

4

L'assetto strutturale dell'orizzonte in quest'area può essere definito come una estesa e blanda anticlinale con asse immergente verso nord all'interno della quale si osservano andamenti irregolari che evidenziano la possibile presenza di strutture più profonde che l'orizzonte stesso ricopre con una sorta di drappeggio.

Gli elementi strutturali sopra descritti sono ulteriormente evidenziati dalla conversione in profondità come risulta dalla mappa delle isobate.

<u>Intra Lias:</u> l'interpretazione di questo orizzonte ha lo scopo di ricostruire l'assetto strutturale che si è determinato nell'area del permesso a seguito della fase tettonica distensiva che, nel Lias inferiore, ha portato allo smembramento della preesistente piattaforma carbonatica del Calcare Massiccio.

Dal punto di vista sismico si è scelto come riferimento la gola determinata dall'aumento di velocità presente al tetto della Formazione Massiccio osservabile nei pozzi Silvana 1 ed Elsa 1; questa è presumibilmente legata alla più marcata dolomitizzazione che sembra aver interessato le facies di piattaforma rispetto alle sovrastanti facies bacinali. Le considerazioni precedenti hanno condotto ad impostare l'interpretazione non tanto sull'individuazione di un preciso marker sismico, poiché la gola che identifica il top del Massiccio non è un segnale così marcato da poter rappresentare un riferimento univoco, quanto su un inviluppo di segnali che permettesse di discriminare una "facies sismica" con caratteristiche di continuità e coerenza più tipiche di una serie bacinale da una sottostante "facies sismica" nella quale la mancanza di queste caratteristiche permettesse di ipotizzare una sequenza di piattaforma; in considerazione del fatto che questa variazione di risposta sismica potrebbe essere determinata da fenomeni secondari di tipo diagenetico (dolomitizzazione) si è preferito non utilizzare la denominazione formazionale ma un più generale riferimento all'intervallo di tempo geologico.

Il contesto geologico che emerge dall'interpretazione sismica è costituito da una serie di alti strutturali delimitati da faglie dirette originate da una fase tettonica distensiva del Lias inferiore e che hanno determinato la fratturazione della piattaforma carbonatica Triassico-Liassica.

L'orizzonte tempi evidenzia come in questo periodo si stiano impostando, nella parte settentrionale del permesso, aree bacinali ben individuabili interposte ai paleoalti prima descritti; nella parte meridionale di quest'area si mantiene invece un ambiente di piattaforma carbonatica.

L'assetto strutturale di questo orizzonte presenta inoltre, come elemento significativo, la comparsa, nel settore centrale del permesso, di un sistema di faglie dirette con un allineamento principale da E-W a SW-NE e parallelo al margine della Piattaforma Apula.

Questo sistema di faglie contribuisce a delimitare alcuni alti strutturali che si vanno delineando in questo periodo all'interno del bacino pelagico che si imposta ad opera della fase tettonica distensiva del Lias inferiore

La mappa delle isobate conferma quanto descritto precedentemente ed in particolare la presenza di una struttura significativa nella parte centro orientale del permesso (Fig.3-4); il culmine di questa struttura si trova a 4685 m. circa di profondità, essa ha una chiusura verticale di 315 m e si estende su un'area di 34,7 Kmq (Fig 5).

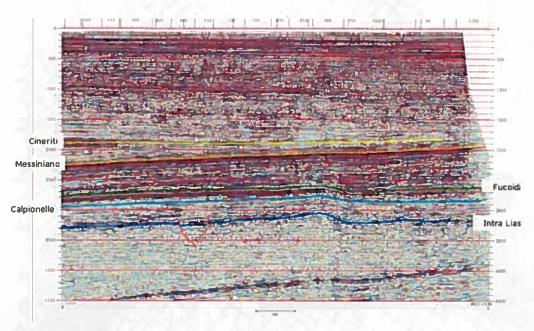


Fig. 3 Linea BR 221-19 FN

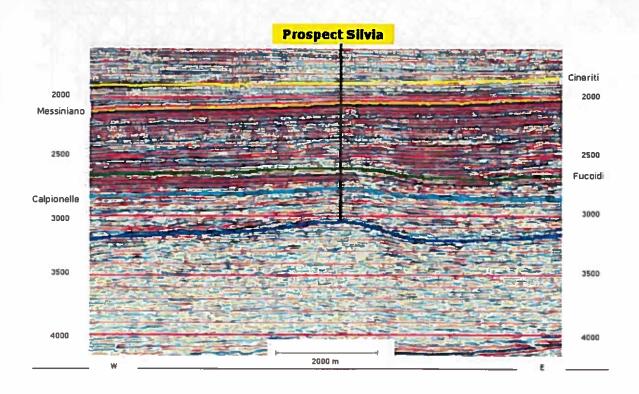
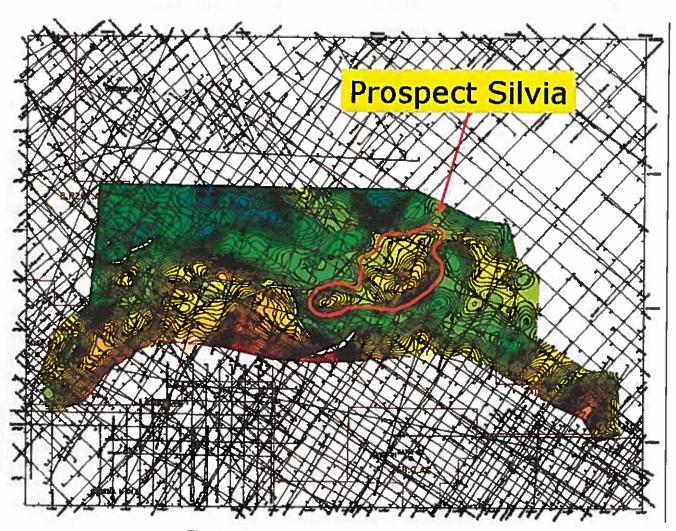



Fig. 4 Linea BR 221-19 FN Prospect Silvia

Ī

Ī

Ī

Ĩ

Ĩ

Ţ

 \Box

Ţ

Ţ

Ţ

Ī

1

I.

Fig. 5 Mappa isobate orizzonte intralias

6 - CONVERSIONE IN PROFONDITÀ

Per ricostruire in profondità l'assetto strutturale, il dato in tempi è stato convertito sulla verticale utilizzando il metodo "layer cake": sono quindi state analizzate le velocità medie al "Top Messiniano" e le velocità intervallari tra le superfici definite dagli orizzonti "Top Messiniano", "Top Marne a Fucoidi", "Top biozona a Calpionelle" "Intra Lias". E' stato inoltre convertito in profondità l'orizzonte "Cineriti", utilizzando le velocità medie, per valutare se l'andamento delle isobate si differenziasse in maniera significativa rispetto a quanto osservato con le isocrone all'interno della serie clastica pliocenica.

Poiché non esistono pozzi perforati nel titolo, questa analisi è stata affrontata a scala regionale utilizzando quindi le misure di velocità dei pozzi ubicati in aree limitrofe (totale di 22 pozzi).

I dati su cui eseguire lo studio sono sufficientemente numerosi per gli intervalli superficiali mentre diminuiscono progressivamente per quelli profondi. E' stata elaborata una carta di isovelocità media alle "Cineriti" ed al "Top Messiniano", e una mappa dell'andamento delle velocità intervallari tra le superfici definite dagli orizzonti "Top Messiniano" e "Top Marne a Fucoidi".

In tabella 1 sono riportati i pozzi utilizzati con i valori di TD e l'ultima formazione raggiunta.

POZZO	TD	ULTIMA FORMAZIONE RAGGIUNTA	
Beatrice 1	2200	Argille del Santerno (Pliocene medio)	
Fratello E5 dir	2690	Argille del Santerno (Pliocene medio)	
Fratello E6 dir	2748	Argille del Santerno (Pliocene medio)	
Fratello E1	3500	Argille del Santerno (Pliocene inf.)	
Greta 1	3180	Argille del Santerno (Pliocene inf.)	
S. Silvestro 1	3004	Argille del Santerno (Pliocene inf.)	
Colle Felice 1	3704	Argille del Santerno (Pliocene inf.)	
Fratello 1	4351	Gessoso solfifera	
Veronica 1	3265	Schlier	
S. Vito Chietino 1	2629	Calcari di Cupello	
Villa Grande 1	3650	Calcari di Cupello	
Ombrina 1	2360	Calcari di Cupello	
Rombo 1	4125	Calcari di Cupello	
Katia 1	2408	Calcari di Cupello	
Katia 2	1916	Calcari di Cupello	
Sonia 1	2121	Calcari di Cupello	
Miglianico 1	4966	Maiolica eq.	
Spinello 1	5889	Corniola	
Elsa 1	4841	Calcare Massiccio	
Silvana 1	5221	Calcare Massiccio	
Granciaro 1	5600	Calcare Massiccio	
Eterno 1 2446		Calcare Massiccio	

Di seguito si espone sinteticamente i risultati dello studio di velocità per ogni intervallo.

<u>Livello mare - Cineriti</u>

Tutti i pozzi considerati hanno attraversato l'orizzonte cineritico: si hanno dunque a disposizione numerosi ed arealmente ben distribuiti dati di velocità media.

Nell'area del titolo tale parametro mostra una diminuzione da 2375 m/sec a 2075 m/sec, da O verso E.

Livello mare - Top Messiniano

Il Top Messiniano è l'orizzonte dal quale si è iniziato ad applicare la conversione in profondità utilizzando il metodo "layer cake"; questa scelta è stata determinata dal fatto che la mappa in isocrone di questo orizzonte risultava più estesa ed affidabile di quella degli orizzonti sovrastanti. La scelta di utilizzare una mappa di velocità media è inoltre legata al fatto che i pozzi di riferimento sono prevalentemente ubicati a sud ed a ovest del permesso ed alcuni di questi presentano delle anomalie di velocità nella serie clastica pliocenica; non potendo, quindi, effettuare una accurata analisi delle velocità intervallo in quest'area, si è preferito realizzare una mappa delle isobate, che utilizzando le velocità medie, mostrasse il trend regionale dell'orizzonte.

Il numero di pozzi che ha attraversato questo intervallo (13) è inferiore rispetto a quelli che hanno interessato l'intervallo precedente poiché alcuni pozzi con obiettivi superficiali non hanno raggiunto il top Miocene. In off-shore le velocità di pozzo mostrano valori con una variazione limitata; in particolare nel titolo in oggetto varia da 2500 m/sec a 2100 m/sec.

Top Messiniano - Top Marne a Fucoidi

I pozzi che hanno attraversato questo intervallo sono 6; i dati suggeriscono l'esistenza di un trend di velocità in diminuzione allontanandosi dalla costa. Nell'area del titolo oggetto di studio essa varia da 5000 m/sec a 4400 m/sec.

I dati a disposizione non sono molti, in particolare manca un controllo nel settore nordoccidentale dell'area, ma poiché dati relativi a pozzi ubicati più a settentrione indicano l'esistenza di un trend simile, si può ritenere che la carta di isovelocità ottenuta sia attendibile.

Top Marne a Fucoidi - Top biozona a Calpionelle

1

Anche questo intervallo è attraversato da 6 pozzi ma in due di questi, Spinello 1 ed Eterno 1, non è stato possibile individuare il limite della biozona a Calpionelle; i valori di velocità di pozzo dei quattro pozzi rimanenti, tutti ubicati ad ovest del permesso, non sono sembrati sufficienti per identificare un trend di velocità attendibile. Si è pertanto ritenuto più opportuno utilizzare, per la conversione in profondità dell'orizzonte, una velocità intervallare di 5450 m/sec.

Top biozona a Calpionelle – Intra Lias

La velocità di questo intervallo varia considerevolmente da pozzo a pozzo ed è condizionata principalmente dai seguenti fattori: presenza o meno di una serie condensata, presenza ed estensione di dolomitizzazione della serie, presenza e spessore di corpi porosi.

Risulta impossibile riconoscere dai dati a disposizione un andamento regionale della velocità intervallare di questo tratto di serie, pertanto per la conversione in profondità dell'orizzonte Intra Lias è stata utilizzata la velocità intervallare di 5700 m/sec che è la media tra i valori ai pozzi Elsa 1, Silvana 1 e Spinello 1.

7 - CONCLUSION

I risultati del futuro pozzo Silvia 1 saranno determinanti per la valutazione del potenziale minerario, del modello geologico e geofisico esistente e daranno indicazioni sull'economicità dello sviluppo per il tema ad olio nell'ambito del permesso B.R263.ET. Sulla base dei risultati del pozzo e sulla base degli studi dei dati raccolti è prevista nel secondo periodo di vigenza la perforazione di un pozzo esplorativo della profondità finale stimata di circa 5000 m. Il costo previsto dry hole è stimabile in circa 20M€.

L'impegno di spesa per studi e reprocessing di Km 200 di linee sismiche è di 300 k€.

Il primo periodo di vigenza del permesso B.R263.ET scadrà il 26.11.2005 e potrà essere rinnovato per altri tre anni avendo soddisfatto gli impegni assunti.

La superficie attuale del permesso è di 464,66 Km2 ed è previsto un rilascio d'area di 116,8609 Km2 (25.15%) per il passaggio al secondo periodo; pertanto l'area residua del permesso sarà di 347.7991 Km2 (Fig. 6)

VERTICI	COORDINATE GEOGRAFICHE		
V LICITOI	Longitudine E (Greenwich)	Latitudine N	
а	14°32'	42°31'	
b	14°46'	42°31'	
C	14°46'	42°30'	
d	14°52'	42°30'	
е	14°52'	42°28'	
f	14°53'	42°28'	
g	14°53'	42°26'	
h_	14°52'	42°26'	
i	14°52'	42°24'	
1	14°44'	42°24'	
m	14°44'	42°25'	
n	14°35'	42°25'	
o	14°35'	42°23'	
р	14°28'	42°23'	
q	14°28'	42°24'	
r	14°29'	42°24'	
S	14°29'	42°25'	
t	14°32'	42°25'	

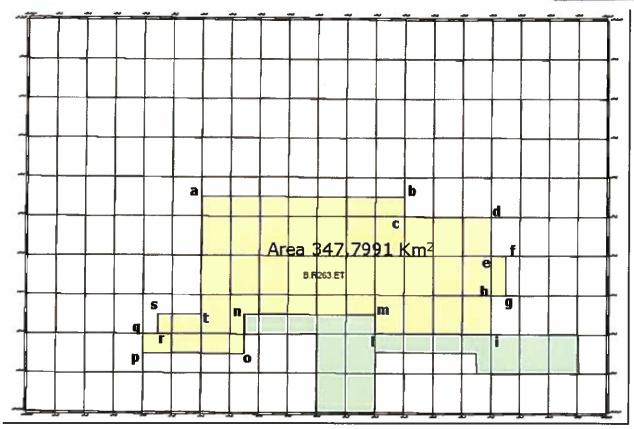


Fig 6 Mappa indice B.R263.ET dopo rilascio d'area.

A fronte dell'attività sopra descritta gli impegni finanziari per il primo periodo triennale di proroga sono di 20300k€.

Si richiede pertanto la prima proroga triennale del permesso B.R263.ET

1

1