### 

DOMINIO SUDALPINO
OCCIDENTALE

Lineamenti geologico minerari





## AREA ENI DOMINIO SUDALPINO OCCIDENTALE LINEAMENTI GEOLOGICO MINERARI

### <u>PREMESSA</u>

Il Dominio Sudalpino Occidentale è un'area ad alto potenziale minerario (soprattutto nella sua parte centrale).

L'interesse minerario è legato sia alla diffusione di gas biogenico che alla presenza di olio e gas termogenico nelle serie Mesozoiche.

### 1) DELIMITAZIONE DELL'AREA

Il dominio sudalpino Occidentale occupa la parte settentrionale della Pianura Padana.

Il limite settentrionale e occidentale è rappresentato dall'arco alpino, quello meridionale dal Monferrato e dall'arco delle "Pieghe emiliane" ed infine a oriente è delimitato dal prolungamento della "Linea del Ballino" in sottosuolo (dal Lago di Garda con andamento NE-SW) (Fig. 1).

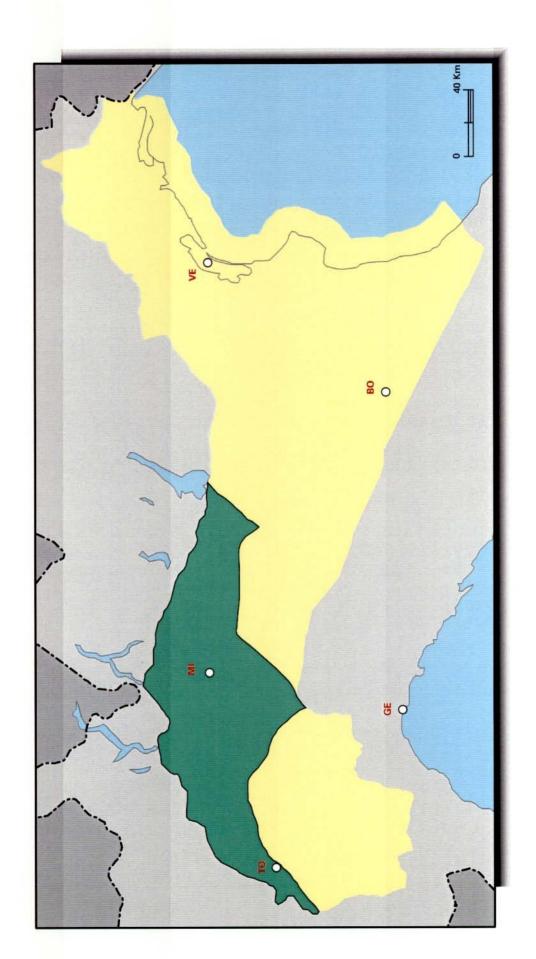



Fig.1



### 2) INQUADRAMENTO GEOLOGICO

### 2.1) Evoluzione sedimentaria

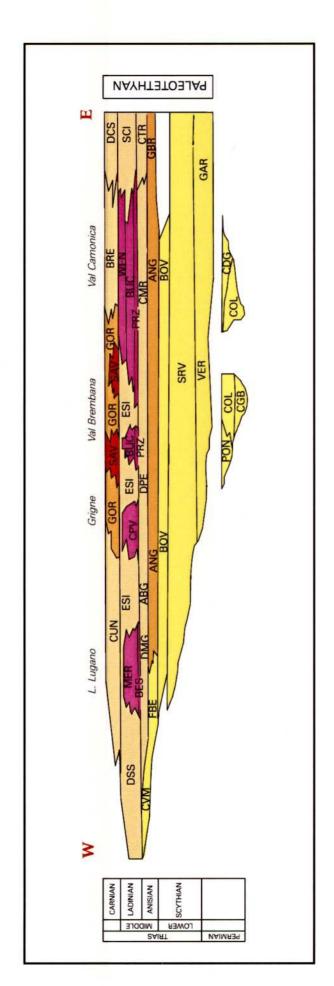
I sedimenti del dominio sudalpino si sono depositati su un basamento metamorfico di età ercinica.

L'evoluzione della sedimentazione è dovuta a due diversi cicli tettonici: un primo ciclo distensivo ed un secondo compressivo, legato all'orogenesi alpina.

La sedimentazione inizia nel Permiano con formazioni continentali-lacustri e l'ingressione marina avviene nel Werfeniano con sedimenti dapprima terrigeni poi terrigeno-carbonatici ed infine carbonatici.

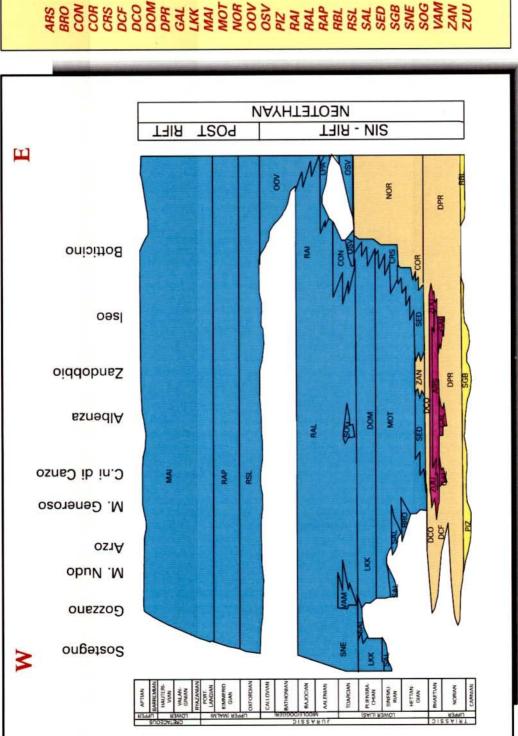
La trasgressione procede da E a W per cui nella parte occidentale la sedimentazione marina inizia solo nell'Anisico. Durante questo primo ciclo, indicato come Paleotetideo, che si estende dal Permiano al Camico medio si è in presenza di una semplice subsidenza del substrato, evidentemente con un tilting verso E. (Fig. 2)

Nel Camico superiore inizia un nuovo ciclo deposizionale legato alla tettonica distensiva derivante dall'apertura prima del Mediterraneo orientale e poi dell'Oceano Ligure.


Questo ciclo è indicato come ciclo Neotetideo.

Dopo una prima fase con sedimenti terrigeni ed evaporitici, nel Carnico superiore, si ha una fase con sviluppo di piattaforme carbonatiche e solchi intrapiattaforma (Norico-Retico e localmente anche Lias) a cui seguono sedimenti di slope e francamente bacinali.

Questa situazione si mantiene fino al Bajociano. Il Batoniano e parte del Calloviano corrispondono ad uno hiatus generalizzato in corrispondenza dell'apertura dell'Oceano Ligure e la sedimentazione riprende nel Calloviano superiore con le radiolariti che indicano un approfondimento del bacino. La sedimentazione prosegue in ambiente profondo fino all'aptiano inferiore (Fig. 3).


Dall'Aptiano superiore inizia sull'area l'effetto della tettonica compressiva che in età Eoalpina (Cretacico) probabilmente deforma la zona degli attuali affioramenti e solo con la fase Neoalpina (Oligocene superiore-Miocene) arriva ad interessare anche il sottosuolo padano.

Durante la fase Ecalpina, la sedimentazione presso il margine settentrionale dell'area è terrigena di rampa e di foredeep mentre al centro dell'area è prevalentemente carbonatica, bacinale e di rampa.



| i |                                               | ABG  | Dolomia dell'Albiga        | DPE  | Dolomie peritidali      |
|---|-----------------------------------------------|------|----------------------------|------|-------------------------|
|   | Unita' di solco intrapiattaforme              | ANG  | Calcare di Angolo          | SSO  | Dolomia di S. Salvatore |
| ī | ( Apporto terrigeno e carbonatico )           | BES  | Fine di Besano             | ESI  | Calcare di Esino        |
|   |                                               | BOV  | Carniola di Bovegno        | FBE  | Fine di Bellano         |
| 1 | Unita' di piattaforma carbonatica             | BRE  | Fine di Breno              | GAR  | Arenarie di Val Gardena |
| ı |                                               | BUC  | Gruppo di Buchenstein      | GBR  | Gruppo di Braies        |
|   | Unita' di piattaforma terrigena e carbonatica | DOO  | Congl. di Dosso dei Galli  | GOR  | Fine di Gorno           |
| 1 |                                               | CGB  | Conglomerato basale        | MER  | Calcare di Meride       |
| Ē |                                               | CMR  | Calcare di Camorelli       | PON  | Fine del Ponteranica    |
|   | Unita' terrigene continentali e marginali     | 700  | Fine di Collio             | PRZ  | Calcare di Prezzo       |
| 1 |                                               | CPV  | Calcare di Perledo-Varenna | SAV  | Arenarie di Val Sabbia  |
|   | Unita' vulcaniche e vulcanoclastiche          | CTR  | F.ne di Contrin            | SCI  | Dolomia dello Sciliar   |
| 1 |                                               | CUN  | F.ne di Cunardo            | SRV  | Servino                 |
|   |                                               | CVM  | Congl. di Val Muggiasca    | VER  | Verrucano Lombardo      |
|   |                                               | DCS  | Dolomia Cassiana           | WEN  | Gruppo di Wengen        |
|   |                                               | 0000 |                            | 0.00 |                         |





Rosso Ammolitico Lombardo

Rosso ad Aptici

Fne di Raibl

Radiolariti

Ene di S.Giovanni Bianco

Calcare di Saltrio Calcare di Sedrina Dolomia di Zandobbio

Calcare di Zu

Ene di Valmaggiore

Ene di Sogno

Scisti Neri

Rosso Ammolitico Veron.Inf.

Marne del Pizzella

Calcare Oolitico di S. Virgilio

Calcari Grigi di Noriglio

Calcare del Vajont

Calcare di Montrasio

Maiolica

Lombardische Kieselkalk

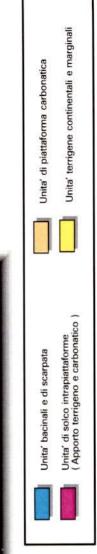
Gruppo dell'Aralalta

Dolomia di Campo dei Fiori

Dolomia Conchodon

Calcare del Domaro

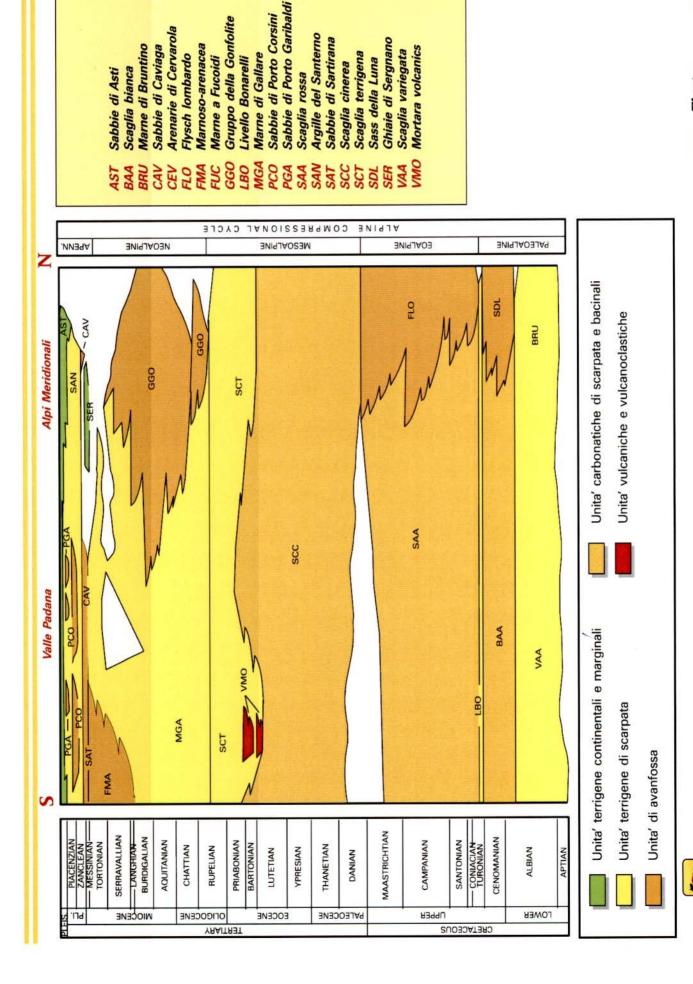
Dolomia Principale


Argilliti di Riva di Solto

Broccatello d'Arzo

Ene di Concesio

Fine della Corna


Ene del Corso





La sedimentazione prosegue con caratteristiche simili fino all'Oligocene quando la fase Necalpina porta al sollevamento dell'attuale edificio orogenico e alla deposizione di sedimenti tardorogeni, più grossolani, nella parte settentrionale e più pelitici alla parte meridionale.

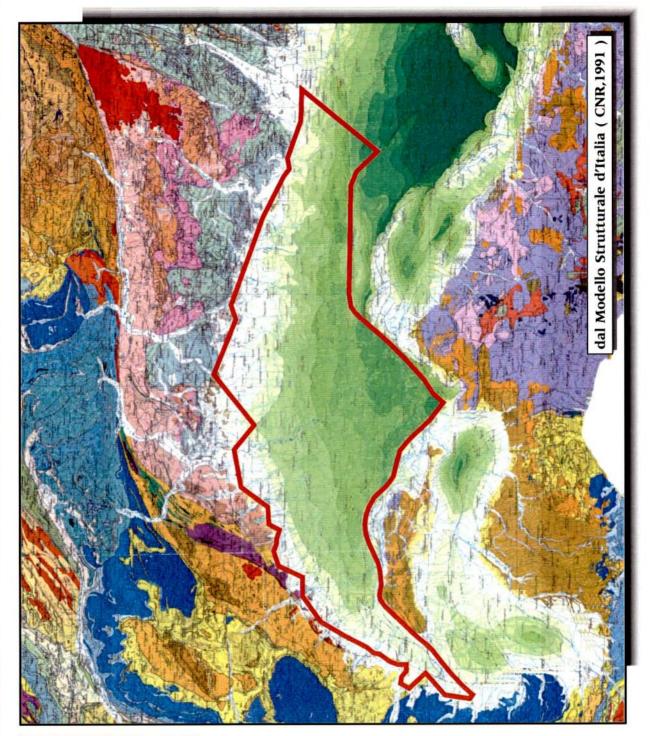
Col Langhiano inizia l'influenza sull'area in esame dell'orogenesi appenninica. Infatti nell'area meridionale incomincia la sedimentazione dei sedimenti di avanfossa appenninica mentre nella porzione settentrionale le serie si fanno lacunose e ricche in depositi transizionali (Fig. 4).

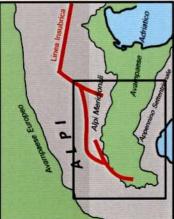




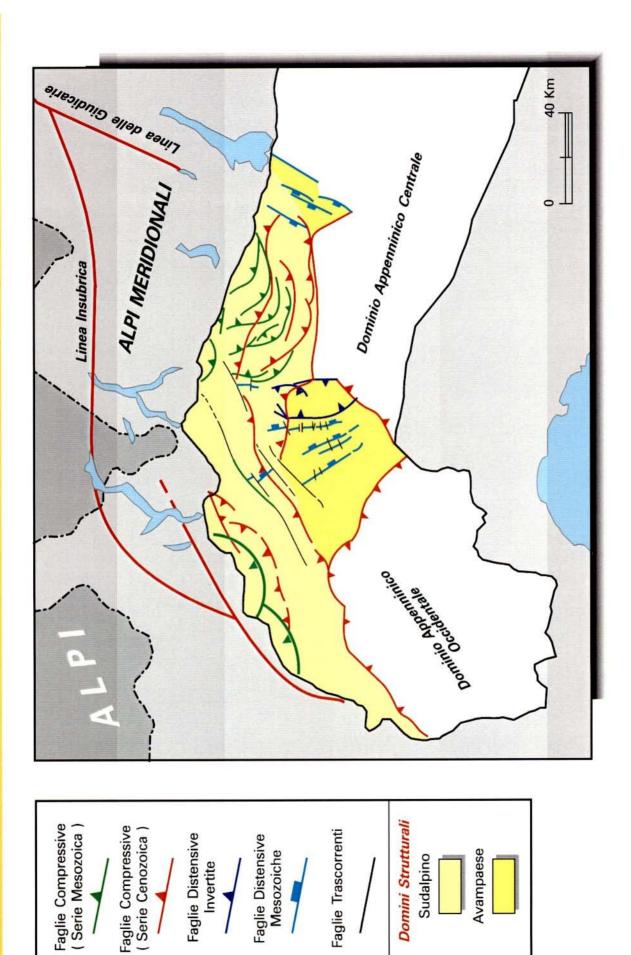
### 2.2 Assetto strutturale

L'attuale assetto strutturale è dovuto alla sovrapposizione dei due cicli tettonici citati in precedenza.

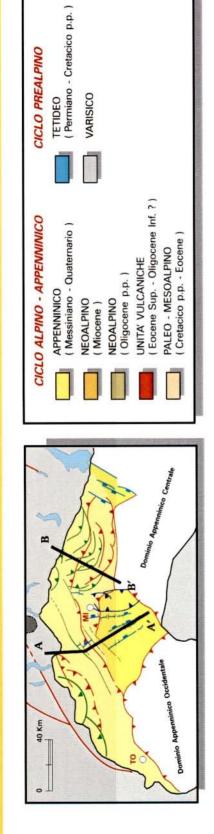

Il ciclo distensivo neotetideo ha lasciato come retaggio un sistema a horst graben con faglie dirette principalmente orientate NNE-SSW e loro coniugate.

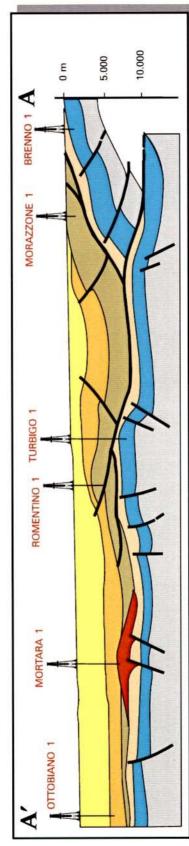

La fase Ecalpina interessa principalmente la zona settentrionale dove ora abbiamo affioramenti di basamento e di rocce mesozoiche.

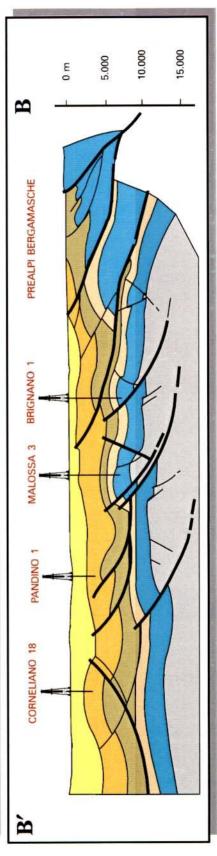
Nel sottosuolo della Pianura Padana (Fig. 5) l'effetto di questa fase è limitato e si manifesta sotto forma di inversioni di strutture.


Durante la fase Neoalpina (Oligocene superiore-Miocene) il fronte deformativo si sposta sempre più a Sud coinvolgendo in strutture compressive sud-vergenti sia la serie mesozoica che quella terziaria.

Dopo la fase Neoalpina, nel Pilo-Quaternario, si assiste ad un generale basculamento dell'area con approfondimento del lato meridionale che diventa l'avampaese dell'orogenesi appenninica. In particolare si può osservare che la zona compressa tra l'arco del Monferrato e l'arco delle pieghe Emiliane (Dominio Appenninico centrale) non è affetta da tettonica compressiva ma è nella condizione di avampaese (Fig. 6 e 7).














(Da PIERI & GROPPI, 1981 Modificato; CASSANO et alii, 1986



### 3) AMBIENTE GEOPETROLIFERO

La ricerca di idrocarburi nel Dominio Sudalpino Occidentale è legata a due temi di ricerca: l'olio e gas termogenico (generalmente in reservoir mesozoici) e il gas biogenico (in reservoir Cenozoici).

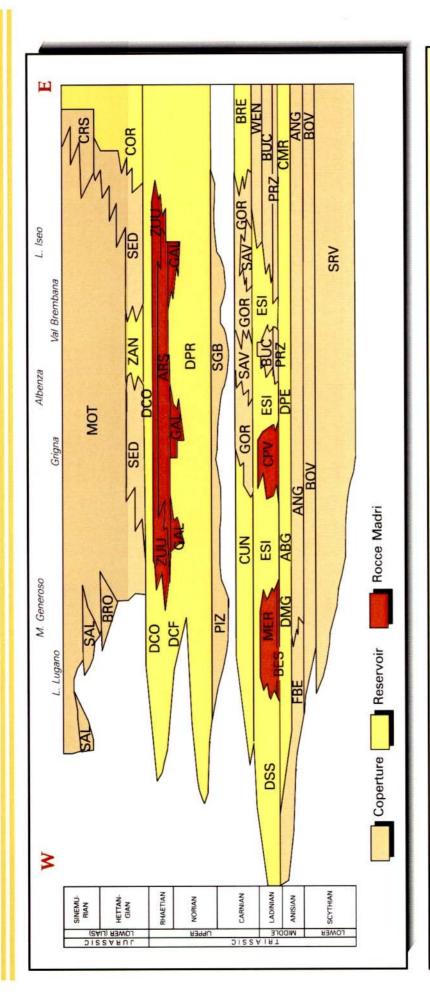
La paleogeografia triassica dell'area indica chiaramente almeno due periodi in cui si sono realizzate delle condizioni ideali per la deposizione di buone rocce madri: nel Ladinico e nel Norico superlore-Retico. In entrambi i casi l'ambiente era quello di estese piattaforme carbonatiche separate da bacini intrapiattaforma. Nei bacini si sedimentavano argille o calcari ricchi di materia organica e le piattaforme carbonatiche fornivano la porosità necessaria per la migrazione e l'accumulo. Nel Ladinico si sono deposte tre rocce madri, gli Scisti ittiolitici di Besano, i Calcari di Meride e i Calcari di Perledo-Varenna. Le piattaforme di questa età sono rappresentate dal calcare di Esino e dalla Dolomia di San Salvatore.

I bacini intrapiattaforme più orientali (bacino del Buchenstein e del Wenghen sembrano non contenere quantità significative di materia organica.

La fase distensiva neotetidea porta alla formazione del bacino Lombardo in cui durante il Norico superiore soprattutto durante il Retico si depositavano i calcari del gruppo dell'Aralalta, le Argilliti di Riva di Solto e le alternanze di Argille e calcari dei Calcari di Zu.

Queste rocce madri sono presenti su gran parte della Lombardia, dal Lago di GarDa al lago di Lugano.

Come già accennato, i reservoir sono rappresentati dai calcari dolomitici di Esino del Ladinico, dalle coeve Dolomie di S. Salvatore, dalla Dolomia a Conchodon del Retico superiore e dalla Liassica Dolomia di Zandobbio.


Le coperture sono in genere fornite dai calcari bacinali o dai livelli marnosi delle stesse rocce madri (Fig. 8).

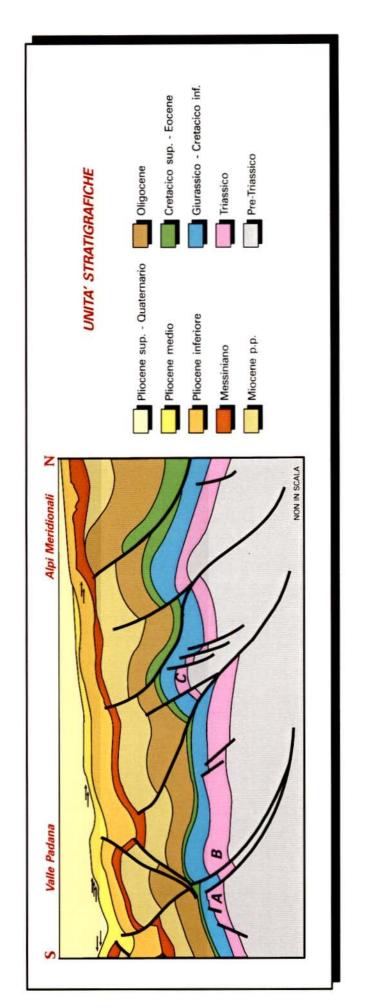
L'olio e it gas termogenico associato si trovano in tre tipi fondamentali di trappola.

Il primo tipo è legato alla tettonica distensiva mesozoica che ha individuato degli alti strutturali. Questo tipo di trappola è comune nella parte meridionale e occidentale del Dominio dove la parte mesozoica della serie non è stata coinvolta dall'orogenesi alpina ed ha mantenuto le caratteristiche di avampaese.

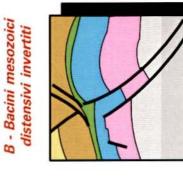
Dove la serie mesozoica è coinvolta nell'orogenesi, si ha lo sviluppo di sovrascorrimento e il fronte delle falde si struttura ad anticlinale.

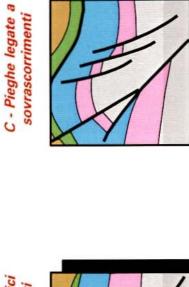
Questo tipo di trappole è sviluppato nella zona Centro orientale del Dominio.




| ABG | Dolomia dell'Albiga     | COR | F.ne della Corna           | DPR | Dolomia Principale     | PRZ | Calcare di Prezzo      |
|-----|-------------------------|-----|----------------------------|-----|------------------------|-----|------------------------|
| ANG | Calcare di Angolo       | CPV | Calcare di Perledo-Varenna | DSS | Dolomia di S.Salvatore | SAL | Calcare di Saltrio     |
| ARS | Arg.ti di Riva di Solto | CRS | Fine del Corso             | ESI | Calcare di Esino       | SAV | Arenarie di Val Sabbia |
| BES | F.ne di Besano          | CCN | Fine di Cunardo            | FBE | F.ne di Bellano        | SED | Calcare di Sedrina     |
| BOV | Carniola di Bovegno     | CVM | Cong.to di Val Muggiasca   | GAL | G.ppo dell'Aralalta    | SGB | F.ne di S.Giovanni B.  |
| BRE | F.ne di Breno           | DCF | Dolomia di Campo dei Fiori | GOR | Fine di Gorno          | SRV | Servino                |
| BRO | Broccatello d'Arzo      | DCO | Dolomia a Conchodon        | MER | Calcare di Meride      | WEN | Gruppo di Wengen       |
| BUC | G.ppo di Buchenstein    | DMG | Dol. di M.te San Giorgio   | MO  | Calcare di Moltrasio   | ZAN | Dolomia di Zandobbio   |
| CMR | Calcare di Camorelli    | DPE | Dolomie peritidali         | PIZ | Marne del Pizzella     | ZNN | Calcare di Zu          |
|     |                         |     |                            |     |                        |     |                        |

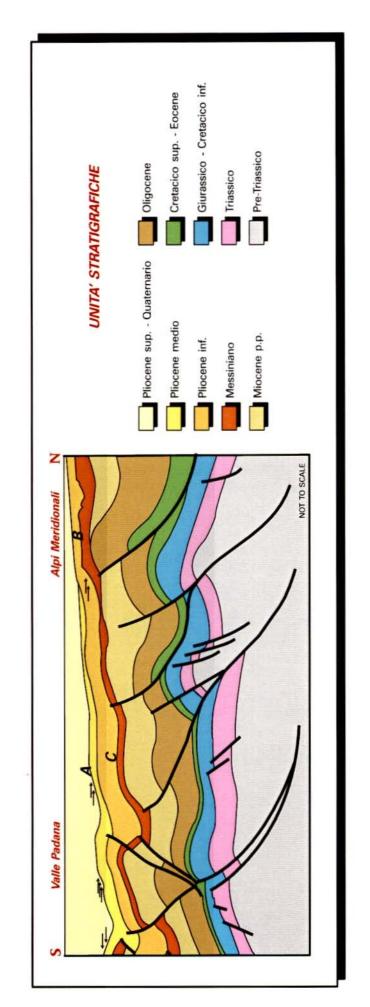



Nella fascia di raccordo tra l'avampaese e la zona dei sovrascorrimenti si sviluppa una tettonica compressiva meno spinta con deformazione di strutture a pieghe e non a falde (Fig. 9).

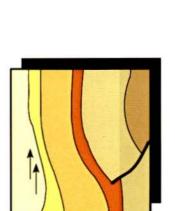

L'altro tema di ricerca è rappresentato dal gas biogenico prodotto dalle argille del riempimento Plio-Quaternario della Valle Padana.

Le trappole in cui si è accumulato questo gas sono di tipo stratigrafico, legate a onlap trasgressivi delle sabbie Plioceniche o a paleomorfologie Messiniane, o di tipo strutturale, legate ai movimenti tardivi dell'orogenesi alpina che hanno blandamente deformato anche la serie pliocenica. (Fig. 10).

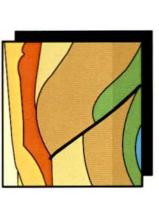



A - Blocchi di faglia di eta' mesozoica

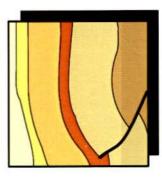











B - Paleogeomorfologie



C - Pieghe legate a sovrascorrimenti

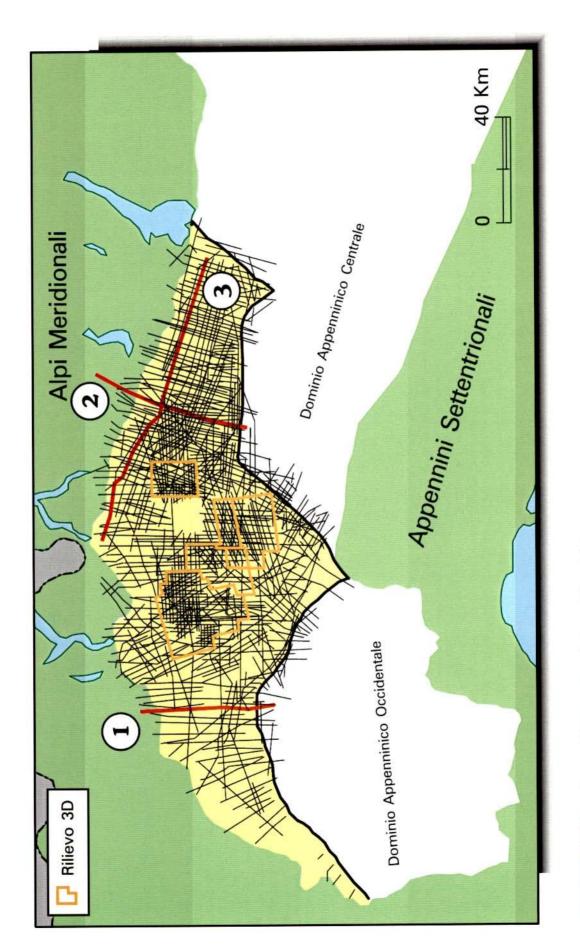


1

### 4) ATTIVITA' SVOLTA E RISULTATI OTTENUTI

L'attività esplorativa nell'area è consistita sia in rilievi sismici a riflessione che in esplorazione meccanica.

Sono stati rilevati circa 17.560 km di linee sismiche convenzionali (2D) con coperture varie (Fig. 11). La densità media del rilievo è di circa 1,5 km/km², ma il rilievo non è uniformemente distribuito nell'area. Infatti, si nota una concentrazione di linee nella zona interessata dalle deformazioni compressive (zona centro-orientale) e un diradamento del rilievo sia nella parte occidentale che in quella meridionale. Inoltre nell'area della città di Milano non è stato possibile rilevare linee sismiche.

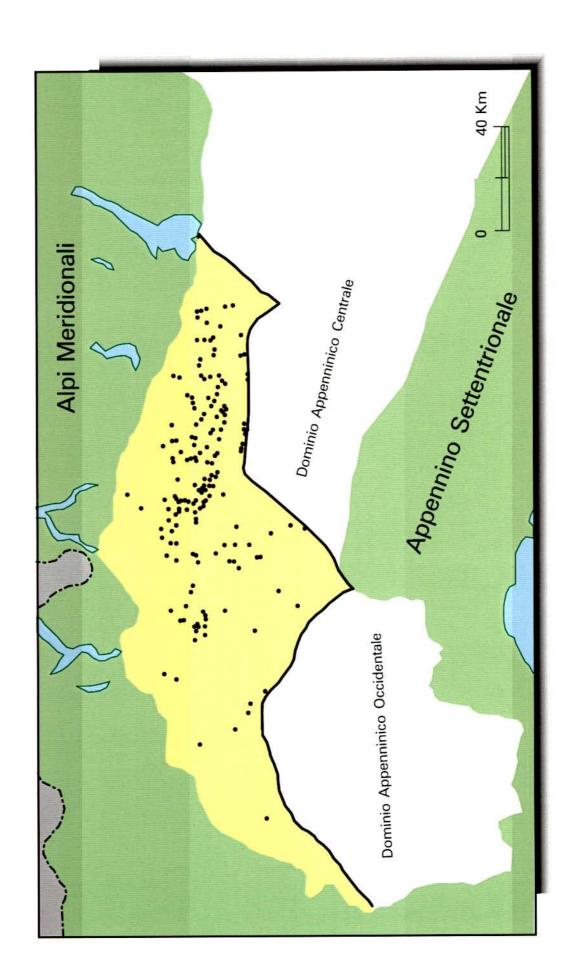

Negli ultimi 10 anni, sulle aree di particolare interesse, sono stati acquisiti numerosi rilievi sismici 3D che coprono un totale di circa 2080 km².

Nell'area (Fig. 12) sono stati eseguiti 218 pozzi esplorativi per un totale di circa 612 km di perforazione; la densità è di circa 53 metri perforati per ogni Kilometro quadrato.

Il tema a gas biogenico è stato perseguito fin dagli anni '40 in strutture relativamente superficiali e successivamente in strutture più profonde ed in trappole stratigrafiche.

Sono stati scoperti nell'area 27 campi con questo tema (Fig. 13) e le trappole sono costituite da pieghe anticlinaliche avanscorse, alti dovuti a paleomorfologia e trappole dovute a downlap di sedimenti di spiaggia. Dagli annì '70 si è incominciato a perseguire il tema dell'olio e gas termogenico in strutture profonde ed in reservoir mesozoici.

La ricerca con questo tema ha portato alla scoperta di 5 giacimenti (Fig. 14).




# Ubicazione linee sismiche allegate



Fig.11

Fig.12





Avampaese

Sudalpino

Domini Strutturali

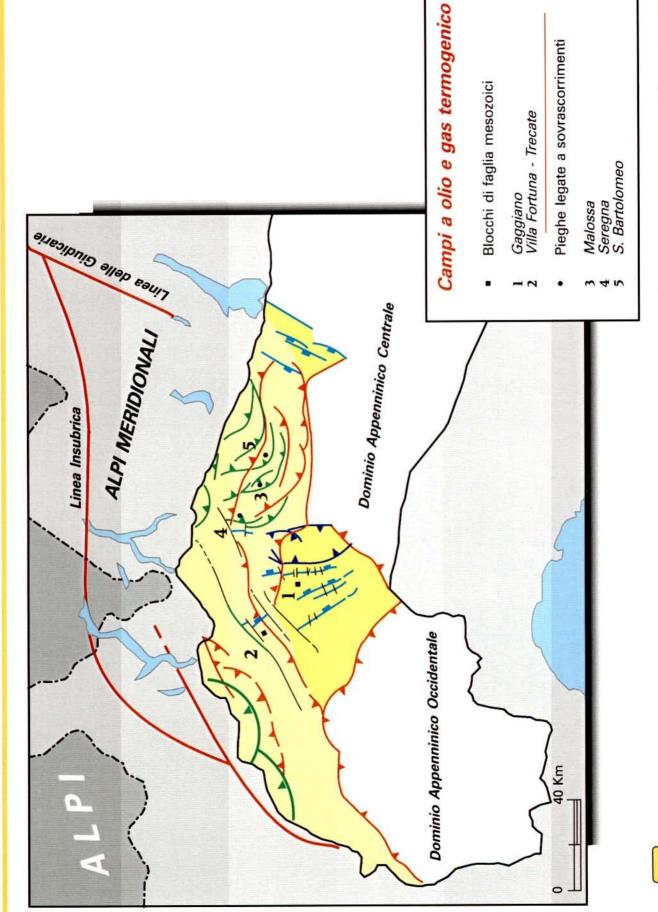
Castellazzo Premenugo Cerrusco S.N. Brazzuto Lambrate Brugherio Cusano Mil.

Caleppio Merlino Settala Ripalta Sergnano Romanengo Orzinuovi Orzivecchi

Desana Agnadello Pandino Gandini Soncino Maclodio Montirone Bagnolo M.

Leno S. Gervasio Ovanengo Tribiano

Faglie Compressive ( Serie Mesozoiche )


0,0000000

Faglie Compressive ( Serie Cenozoiche )

Faglie distensive invertite

Faglie distensive mesozoiche Faglie trascorrenti







### CAMPI DOMINIO SUDALPINO OCCIDENTALE

| NOME CAMPO            | ANNO   | RESERVOIR                                      | MINERALIZZAZIONE |
|-----------------------|--------|------------------------------------------------|------------------|
| BORDOLANO             | 1951   | CAVIAGA                                        | GAS              |
| SERGANO               | 1953   | SERGNANO                                       | GAS              |
| DESANA                | 1954   | GONFOLITE                                      | GAS              |
| ROMANENGO             | 1954   | SANTERNO-CAVIAGA-SERGNANO                      | GAS              |
| BAGNOLO MELLA         | 1955   | SERGNANO                                       | GAS              |
| ORZIVECCHI            | 1955   | SERGNANO-SANTERNO                              | GAS              |
| PANDINO               | 1955   | CAVIAGA-SERGNANO                               | GA\$             |
| MACLODIO              | 1956   | SERGNANO-SANTERNO                              | GAS              |
| BRUGHERIO             | 1958   | SERGNANO                                       | GAS              |
| CERNUSCO SUL NAVIGLIO | 1958   | SERGNANO                                       | GAS              |
| LENO                  | 1959   | SERGNANO                                       | GAS              |
| MONTIRONE             | 1959   | SANTERNO                                       | GAS              |
| CUSANO MILANINO       | 1960   | SERGNANO                                       | GAS              |
| ORZINUOVI             | 1960   | SERGNANO                                       | GAS              |
| SONCINO               | 1960   | SERGNANO                                       | GAS              |
| LAMBRATE              | 1964   | SERGNANO                                       | GAS              |
| MALOSSA               | 1973   | DOLOMIA PRINCIPALE-<br>ZANDOBBIO-MAIOLICA      | OLIO E GAS       |
| SEREGNA               | 1976   | BRUNTINO                                       | OLIO E GAS       |
| SETTALA               | 1977   | SANTERNO                                       | GAS              |
| AGNADELLO             | 1978   | SANTRERNO                                      | GAS              |
| CALEPPIO              | 1978   | SANTERNO                                       | GAS              |
| MERLINO               | 1978   | SANTERNO                                       | GAS              |
| PREMENUGO             | 1978   | GALLARE                                        | GAS              |
| GANDINI               | 1980   | SANTERNO                                       | GAS              |
| SAN BARTOLOMEO        | 1980 - | DOLOMIA PRINCIPALE                             | OLIO E GAS       |
| GAGGIANO              | 1982   | MERIDE                                         | OFIO             |
| OVANENGO              | 1982   | SERGNANO                                       | GAS              |
| VILLAFORTUNA-TRECATE  | 1984   | DOLOMIE A CONCHODON-<br>PRINCIPALE SAN GIORGIO | OLIO E GAS       |
| BRAZZUTO              | 1986   | P,TO GARIBALDI                                 | GAS              |
| CASTELLAZZO           | 1986   | SANTERNO                                       | GAS              |
| SAN GERVASIO          | 1991   | SANTERNO                                       | GAS              |
| TRIBIANO              | 1993   | P.TO CORSINI                                   | GAS              |