DIGE/GELG

POZZO: SANTA VENERE 1 (3° Foro) (Permesso AGIRA; SARCIS 100%)

PAG 1 DI 30

AGGIORNAMENTI:

RELAZIONE FINALE

SANTA VENERE 1 (3° Foro)

(Permesso AGIRA)

Febbraio 2001

2				-
1			,	
		A neuly	Mins	96
0	Emissione	A. Meletti	∫ G. Minneci	G. Capone
	* **	G. Minneci		
	AGGIORNAMENTI	PREPARATO DA	CONTROLLATA DA	IL RESPONSABILE

RELAZIONE FINALE

Il presente documento è RISERVATO ed è di proprietà AGIP

Esso non sarà mostrato a terzi nè sarà utilizzato per scopi diversi da quelli per i quali è stato trasmesso.

(Permesso AGIRA; SARCIS 100%)

PAG. 2 DI 30

AGGIORNAMENTI:

LISTA DI DISTRIBUZIONE

RESPONSABILE DI PROGETTO

• AESC

Copie Nr. 1

DISTRETTO

GEAP

Copie Nr. 1

GELG

Copie Nr. 2

GEIP

Copie Nr. 1

SEDE DI SAN DONATO M.SE

DAGE

Copie Nr. 1

ESTERNI

COREMI

Copie Nr. 1

DIGE/GELG

POZZO: SANTA VENERE 1 (3° Foro)

(Permesso AGIRA; SARCIS 100%)

PAG. 3 DI 30

AGGIORNAMENTI:

0

INDICE

1 DATI IDENTIFICATIVI	5
2 OBIETTIVI DEL POZZO	7
3 RISULTATI E CONCLUSIONI	7
3. 1 RISULTATI GEOLOGICI	7
3. 2 RISULTATI MINERARI	7
4 DATI GEOLOGICI	8
4. 1 INQUADRAMENTO GEOLOGICO	8
4. 2 LITOSTRATIGRAFIA E CRONOSTRATIG	RAFIA10
4. 3 ANALISI DEL DIPMETER	11
4. 4 SISMICA DI POZZO	11
4. 5 PROFILO DI PRESSIONE	11
4. 6 PROFILO DI TEMPERATURA	13
5 DATI PETROFISICI-MINERARI	14
5. 1 CARATTERISTICHE DEL RESERVOIR	14
5. 2 MANIFESTAZIONI	15
5. 3 WIRELINE TESTING	16
5. 4 PROVE DI STRATO	16
5. 5 PROVE DI PRODUZIONE	16
5.5.1 PdP # 1	16
5.5.2 PdP # 2	17
5.5.3 PdP # 3	18
5.5.4 PdP # 4	19
6 DATI GENERALI	20
6. 1 CAMPIONAMENTO LITOLOGICO	20
6.1.1 CUTTING	20
6.1.2 CAROTE DI FONDO	21
6.1.3 CAROTE DI PARETE	21

Eni Divisione Agip

POZZO: SANTA VENERE 1 (3° Foro)

(Permesso AGIRA; SARCIS 100%)

PAG. 4 DI 30
AGGIORNAMENTI:

DIGE/GELG

6. 2 WELL LOGGING	421
6.2.1 LOG WIRE LINE	21
6.2.2 Log While Drilling	22
6. 3 CRONOLOGIA DELLE OPERAZIONI	23
6. 4 TRAIETTORIA DEL POZZO	25
	26
6.5.1 ASSORBIMENTI E PERDITE DI CIRCO	LAZIONE27

FIGURE

- 1. Carta indice
- 2. Ubicazione del Pozzo
- 3. Linea sismica EN 96477
- 4. Mappa sismica top Unità Gagliano
- 5. Profilo litostratigrafico previsto e reale
- 6. Well summary
- 7. Regime idrodinamico dell'area del pozzo S.VENERE 1
- 8. Profilo di temperatura
- 9. PdP # 1 Schema della batteria di prova
- 10. Well Situation
- 11. Bollettino Analisi Gas PdP # 2 (Campione 1)
- 12. Bollettino Analisi Gas PdP # 2 (Campione 2)
- 13. Bollettino Analisi Acque PdP # 3 e 4
- 14. Dati di deviazione 1° e 2° Foro
- 15. Dati di deviazione 3° Foro
- 16. Sezione verticale ed orizzontale del foro
- 17. Diagramma di avanzamento giornaliero

ALLEGATI

- 1. Profilo 1:1000
- 2. Masterlog
- 3. Masterlog GR

Divisione Agip

DIGE/GELG

(Permesso AGIRA; SARCIS 100%)

POZZO: SANTA VENERE 1 (3° Foro)

PAG. 5 DI 30

AGGIORNAMENTI:

0

0

1 DATI IDENTIFICATIVI

Pozzo

SANTA VENERE 1 (3° foro)

Codice

07558

Titolarità

Titolare

Sarcis 100 %

Operatore

ENI - AGIP

Ubicazione

Paese

Italia

Regione

Sicilia - Zona 5

Permesso

AGIRA

Comune/Provincia

Leonforte / Enna

Carta

IGM

Foglio

Nicosia 260 2° SE

Linee sismiche

Incrocio linea MA-2 con linea EN 406-92

Coordinate di superficie

Geografiche

Lat. 37° 41' 1,8" N

Long. 01° 52' 57,5" EMM

14° 20' 05,9" E Greenwich

Metriche Gauss Boaga

4.171.013,460 N

2.461.359,601 E

Coordinate di fondo pozzo

Geografiche

Lat. 37° 40' 55,388" N

Long. 01° 53' 08,942» EMM

14° 20' 17,342" E Greenwich

Metriche Gauss Boaga

4.171.013,460 Lat

2.461.395,601 Long E

Sezione

E = 280,36 m

N = -197,69 m

Scostamento fondo pozzo

343 m - Azimut 125,2°

Quote

Piano campagna

810 m s.l.m.

Tavola Rotary

819,3 m. s.l.m

Divisione Agip

POZZO: SANTA VENERE 1 (3° Foro)

(Permesso AGIRA; SARCIS 100%)

PAG.	6	DI	30	

AGGIORNAMENTI:

0

Profondità finale

DIGE/GELG

misurata

3688,0 m

verticale

3635,2 m

s.l.m

- 2815,9 m

Classificazione

Iniziale

New Field Wildcat (NFW)

Finale

New Field Discovery Wildcat (NFDW)

Esito minerario

Gas e condensato

Status

Completato (singolo selettivo)

Livelli completati

1976,5-2027,5 m; 2132-2171 m; 2649-2676,5 m

Impianto di perforazione

Oilwell E 3000

Contrattista

Saipem

Tempi

Inizio perforazione

10 Giugno 1998

Fine perforazione

31 Ottobre 1998

Rilascio impianto

01 Dicembre 1998

Contrattisti per la Geologia operativa

Mud Logging

Geoservices

Well Logging

Schlumberger

MWD e LWD

Baker Hughes Inteq

(Permesso AGIRA; SARCIS 100%)

P	AG.	1	DI	30	
AG	GIO	RN	ÍΑN	MENTI:	
0					

DIGE/GELG

2 OBIETTIVI DEL POZZO

Il sondaggio SANTA VENERE 1 (3° foro) è stato perforato a NW del pozzo VILLADORO 1 BIS ed aveva lo scopo di investigare i livelli quarzarenitici del Flysch Numidico e in particolare l'updip quarzarenitico dell'Unità Gagliano presente nel pozzo VILLADORO 1 BIS che in prova aveva prodotto circa 10000 nmc/g di gas.

3 RISULTATI E CONCLUSIONI

3. 1 RISULTATI GEOLOGICI

La successione perforata dal pozzo S. VENERE 1 è caratterizzata da una serie di ripezioni Flysch Numidico - Argille Variegate.

Il sondaggio ha infatti attraversato nella parte alta, fino a 950 m, una sequenza Numidica basale equivalente alla serie di Portella Colla (Oligocene Inferiore, parte alta).

Successivamente ha incontrato una serie argillosa della formazione delle Argille Variegate fino a 1620 m e di nuovo Flysch Numidico del Miocene basale-Oligocene sommitale fino a 2050 m, per poi nuovamente attraversare una successione di Argille Variegate fino a 3100 m.

A partire da 3100 m è entrato nel Numidico dell'Unità Gagliano incontrando una sequenza sostanzialmente argilloso-siltosa.

L'alta velocità sismica riscontrata soprattutto nelle sequenze Numidiche oltre a spostare molto in profondità il top dell'Unità Gagliano, obiettivo primario del sondaggio, ha molto modificato l'immagine della struttura e come risulta anche dall'esame dell'OBDT il pozzo ha perforato il fianco settentrionale di un'antiforme Sud-Est vergente connessa ad un back thrust regionale ben evidente sia in sismica che in affioramento.

3. 2 RISULTATI MINERARI

Il pozzo SANTA VENERE 1 non risulta di particolare interesse produttivo.

Sono state eseguite quattro Prove di Produzione (PdP) in corrispondenza di bancate quarzarenitiche delle Unità Superiori del Flysch Numidico. Le uniche prove che sono risultate mineralizzate a gas sono state la # 1 e 2 eseguite ambedue nell'intervallo 2649- 2676,5 m.

La PdP # 1 eseguita con l'impianto di perforazione ha evidenziato la mineralizzazzione a gas e gasolina del livello. Il pozzo è stato completato quindi in singolo selettivo in corrispondenza degli intervalli 2649-2676,5 m; 2132-2171 m e 1976,5-2027,5 m.

(Permesso AGIRA; SARCIS 100%)

PAG.	8 DI	30
AGGIO	RNA	ИENTI:
^		

DIGE/GELG

Le successive PdP sono state condotte in modalità rig less.

Durante la PdP # 2 (2649-2676,5 m) non si è riusciti ad avere dei parametri di erogazione stabilizzati, si è stimata una depletion di circa 50 Kg/cm² a fronte di 48 ore di erogazione ed un cumulativo di gas prodotto durante la prova di soli 104000 Smc che indicano, in termini di consistenza del giacimento, un GOIP dinamico di entità molto ridotta, (GOIP stimato 1MSm³). Il cumulativo di gasolina prodotta è di 19,54 mc. La prova, quindi, ha evidenziato una limitata estenzione laterale dell'intervallo mineralizzato.

Per l'interpretazione della prova si è utilizzato un modello di pozzo con Wellbore storage & skin in giacimento omogeneo del tipo a sistema chiuso ottenendo questi risultati:

Pressione statica iniziale di fondo

Pi = $302 \text{ Kg/cm}^2 \text{ ass. a m } 2645 \text{ m/TR}$

Pressione statica finale di fondo

Pf = $249.7 \text{ Kg/cm}^2 \text{ ass. a } 2645 \text{ m/TR}$

Capacità produttiva della formazione

kh = 44 mD x m

Coefficente wellbore storage

 $C = 0.05 \text{ m}^3/\text{Kg/cm}^2$

Skin totale

Stot = 26

Permeabilità della formazione

circa 3 mD

Le PdP # 3 e 4 sono risultate ad acqua salata. Nel dettaglio l'intervallo interessato dalla PdP # 3 (2132-2171 m) ha erogato in spontanea acqua di strato a 11 gr/lt NaCl eq., mentre l'intervallo interessato dalla PdP # 4 (1976,5-2027,5 m) ha erogato in spontanea acqua di strato a 11,3 gr/lt NaCl eq.

4 DATI GEOLOGICI

4. 1 INQUADRAMENTO GEOLOGICO

L'assetto geologico-strutturale dell'area si inquadra all'interno della catena Appenninico-Maghrebide in un sistema di falde tettoniche con vergenza meridionale.

L'attuale geometria della catena è il risultato di un raccorciamento crostale iniziato nell'Oligocene Superiore e tuttora attivo, che ha progressivamente coinvolto e traslato, dalle aree più interne (Tirreniche) alle aree più esterne (Iblee-Saccensi), quattro distinte Unità stratigrafico-strutturali, corrispondenti ai domini paleogeografici che si sono sviluppati nell'area a partire dal Mesozoico.

Questi, dall'interno verso l'esterno, sono rappresentate da:

- Unità cristalline Calabro-Peloritane

Divisione Agip

POZZO: SANTA VENERE 1 (3° Foro) (Permesso AGIRA; SARCIS 100%)

PAG. 9 DI 30

AGGIORNAMENTI:

0

DIGE/GELG

- Bacino Sicilide
- Piattaforma Panormide
- Bacino Imerese/Sicano
- Avampaese Ibleo/Saccense

Le prime deformazioni compressive sono testimoniate dalla deposizione nell'Oligocene Superiore di una potente sequenza silicoclastica di Avanfossa (Flysch Numidico), che ricopre i domini geologici della Piattaforma Panormide e del Bacino Imerese.

Con il procedere della convergenza si coinvolgono progressivamente le Unità più esterne.

Nel Miocene inferiore, le Unità tettoniche del Bacino Sicilide sovrascorrono sul Flysch Numidico e questo successivamente, assieme al suo basamento deposizionale Panormide e Imerese, viene coinvolto dalla compressione e traslato verso aree esterne.

Le Unità litostratigrafiche presenti nell'area del permesso sono costituite dalle formazioni carbonatiche Mesozoico-Terziarie del bacino Imerese, ricoperte stratigraficamente dalla serie terrigena Oligo-Miocenica del Flysch Numidico.

Dall'interpretazione sismica di più orizzonti, si distinguono due differenti stili strutturali:

- a) sovrascorrimenti delle Unità tettoniche più elevate, di provenienza più interna, a thrust embricati (Unità Sicilidi e Unità Numidiche interne);
- b) deformazioni minori con piani inversi ad alto angolo che coinvolgono l'unità Gagliano con la sottostante successione carbonatica bacinale Imerese.

Il top dell'Unità Gagliano (Flysch Numidico) corrisponde generalmente a un'importante superficie di scollamento; le Unità geometricamente superiori a questa discontinuità tettonica hanno aspetto strutturale più complesso e grado di alloctonia maggiore.

Il reservoir oggetto della ricerca è rappresentato dalle quarzareniti del Flysch Numidico.

(Permesso AGIRA; SARCIS 100%)

PA	۱G.	10	DI	30)
AGGIORNAMENTI:					
0		T		T	

....

4. 2 LITOSTRATIGRAFIA E CRONOSTRATIGRAFIA

I limiti litostratigrafici sono stati determinati sulla base dei cuttings, dall'analisi dei log e dei risultati delle analisi palinologiche e petrografiche.

	Stratigrafia	MD metri	TVD	TVDssl
Flysch Numidico	Oligocene superiore	superficie		
Argille Variegate	Oligocene inf Eocene sup.	950	950	- 130,6
Flysch Numidico	Oligocene Sup Miocene inf.	1620	1618,3	- 799
Flysch Numidico	Non definito	2050	2048,3	- 1229
Argille Variegate	Eocene superiore	2690	2684,1	- 1864,8
Flysch Numidico	Miocene inferiore	3100	3079,8	- 2260,5
(Unità Gagliano)				
P	rofondità Finale	3688	3635,17	- 2815,9

La successione litologica incontrata è suddivisa nei seguenti intervalli:

superficie - 950 m: Argillite grigia scura, siltosa con livelli di Arenaria quarzosa grigio chiara a grana medio fine a cemento siliceo

950 - 1620 m: Argillite grigio verdastra, bruna con qualche intercalazione di Arenaria grigia a grana fine passante a Siltite.

1620 - 2690 m: Argillite grigio scura siltosa con livelli e bancate di Arenaria quarzosa, grigio chiara a grana medio fine e a cemento siliceo.

2690 – 3100 m: Argillite grigio verdastra, bruna con qualche intercalazione di Arenaria grigia a grana fine passante a Siltite e di calcare tipo MDST marrone chiaro e biancastro a partire da m 2800.

3100 – 3688 m: Argillite grigio scura, siltosa, con livelli di Arenaria quarzosa grigio chiara a grana medio fine ed a cemento siliceo.

(Permesso AGIRA; SARCIS 100%)

AGGIORNAMENTI:

DIGE/GELG

4. 3 ANALISI DEL DIPMETER

Nel pozzo è stato registrato il log OBDT della Schlumberger nel solo intervallo 2129-3217 m, i responsi di questo log sono generalmente scarsi e talora caotici, con discreta qualità per quanto concerne i cyberdip che indicano inclinazioni in progressivo aumento da 30° a 2200 m ai 45-50° di 2690 m (top Argille Variegate) per restare costanti sino a 3200 m con immersione N-NW in tutto l'intervallo registrato.

4. 4 SISMICA DI POZZO

La perforazione del pozzo è stata assistita dall'acquisizione sismica While Drilling SEISBIT registrata da OGS Trieste.

Per quanto riguarda il risultato di questa acquisizione si rimanda al rapporto elaborato dal servizio di Sede APSI.

Non sono state eseguite operazioni wire line di acquisizione sismica in pozzo.

4. 5 PROFILO DI PRESSIONE

Durante la perforazione lo sviluppo dei gradienti è stato seguito con il sigma log elaborato dalla Geoservices. Le uniche misure di pressione di formazione sono state effettuate nel corso delle prove di produzione.

Prof.	Prof. verti-	SBHP	note
metri	cale metri	Kg/cm²	
1952	1950,3	213,8	misura registrata con il profilo statico n°1 della PdP # 4
2121	2119,3	232,2	misura registrata con il profilo statico n°1 della PdP # 3
2645	2640,3	302,0	Pi, pressione statica iniziale di giacimento

I dati acquisiti sono stati riportati, insieme agli altri dati di pressione acquisiti sui pozzi perforati nell'area, su un diagramma pressioni/profondità in fig. 7.

Le considerazioni che possono essere fatte per il pozzo S.VENERE 1 sono di seguito riportate:

1° foro, fase 23" da 59 a 503 m

La fase è stata perforata con fango 1,1 Kg/l senza incontrare particolari difficoltà, il sigma log non presenta andamenti tali da evidenziare discontinuità nei valori di pore pressure.

(Permesso AGIRA; SARCIS 100%)

PAG. 12 DI 30 AGGIORNAMENTI:

1° foro, fase 14"3/4 da 503 a 1616 m

La fase è stata caratterizzata dal breve tempo di perforazione impiegato per il raggiungimento del casing point e dalla successiva presa di batteria avvenuta a 1232 m, tale da comportare l'abbandono della fase.

Più in particolare, la fase è stata perforata in 4 battute nel corso delle quali la densità del fango è progressivamente incrementata da 1,1 a 1,29 Kg/l causa sovrattiri, tentativi di presa batteria. abbondante presenza di frana ai vagli.

I litotipi attraversati sono costituiti prevalentemente da argilliti con intercalazioni di arenaria .

La curva sigmalog e il gradiente dei pori evidenziano uno sviluppo di gradiente normale sino a 750 m per poi incrementare raggiungendo il valore max di circa 1,2 Kg/cm²x10m a 1616 m.

3° foro, fase 16" da 547 a 1513 m

Questa fase ricalca nei problemi di perforazione gli stessi della fase 14"3/4 del foro 1 con in più qualche locale problema di assorbimento dovuto al fatto che per evitare problemi di frana si è perforato con fango fino a 1,52 kg/l.

Il gradiente dei pori da sigmalog evidenzia un iniziale sviluppo di pressione da 800 m per raggiungere il valore di circa 1,2 Kg/cm²x10m intorno ai 1100 m per poi stabilizzarsi su valori compresi tra 1,15 e 1,2 Kg/cm²x10m sino a fine fase.

3° foro, fase 12"1/4 e 8"1/2 da 1513 a 3217 m

Fasi più o meno simili sia nei problemi di perforazione che nelle litologie attraversate nella fase precedente.

L'aumento del peso del fango da 1,5 fino a 1,7 Kg/l è servito in parte ad eliminare i problemi di frana, ma di contro ha favorito i fenomeni di assorbimento nella parte bassa dell'intervallo.

Il gradiente dei pori ha rilevato un gradiente di formazione pressochè uniforme e stabile con valori intorno a 1,15 Kg/cm²x10m.

I dati acquisiti con le PdP # 3 e 4 indicano gradienti di 1,1 Kg/cm²x10m TR.

Questi ultimi non rappresentano esattamente la pressione di giacimento in quanto i valori registrati durante i profili statici non erano completamente stabilizzati. E' comunque ragionevole ipotizzare che le pressioni di formazione possano essere comprese intorno ai valori registrati.

Il dato acquisito con le PdP # 1 e 2 indica un gradiente iniziale di 1,14 Kg/cm²x10m.

Questo livello (2649-2659,5 / 2673-2676,5 m), mineralizzato a gas, ha avuto durante le prove un sensibile calo di pressione, attestandosi a fine prova, dopo solo 48 ore di erogazione, ad un gra-

(Permesso AGIRA; SARCIS 100%)

P	∖G. I	J DI	30	
AGGIORNAMENTI:				
0				

DIGE/GELG

diente di pressione di 0,95 Kg/cm²x10m.

Questo livello è l'unico risultato mineralizzato ad idrocarburi ma contemporaneamente è risultato senza particolare interesse produttivo data la limitata estenzione laterale.

3° foro, fase 6" da m 3217 a m 3688

Anche per questa fase valgono tutte le considerazioni formulate per la fase precedente, il gradiente dei pori da sigma log si è mantenuto stabile intorno a valori di 1,15 Kg/cm²x10m senza variazioni degne di nota mentre il peso del fango da 1,4 Kg/l è stato portato progressivamente a 1,44 Kg/l.

Considerato che il pozzo è stato perforato a partire da 819 m (PTR) sul livello del mare il gradiente di formazione risulta ampiamente compensato dal peso del fango (risultato dai dati pore pressure di sigma log e dai dati ottenuti durante le prove di produzione).

Le consistenti perdite di circolazione avvenute durante la perforazione sono infatti giustificate dal differenziale di pressione a sfavore della formazione con cui è stata attraversata la successione.

4. 6 PROFILO DI TEMPERATURA

I valori di temperatura acquisiti durante la registrazione dei log e durante le PdP sono riassunti nella seguente tabella:

Log	prof.	prof. verticale	t	Dţ	Dt + t	BHT	SBHT
	metri	metri	ore	Ore	Dt	C°	C°
AIT	2131	2130	2	13,5	0,87	89	
LDL	2131	«	2	20	0,91	93	100
BHC	3693	3635	3	14	0,82	93	
AIT	«	«	3	17	0,85	95	106
PdP # 4	1952	valore non atte	valore non attendibile perché non stabilizzato				
PdP # 3	2121	valore non atte	valore non attendibile perché non stabilizzato				
PdP # 2	2649	valore non atte		55			
PdP # 1	2649	valore non atte	endibile pe	erché non st	abilizzato	47,6	

Il profilo indica uno sviluppo normale della temperatura con un gradiente calcolato di circa 0,6°C ogni 30 metri.

(Permesso AGIRA; SARCIS 100%)

PAG. 14 DI 30 AGGIORNAMENTI:

0

5 DATI PETROFISICI-MINERARI

5. 1 CARATTERISTICHE DEL RESERVOIR

L'analisi dei log e dei dati di perforazione presentava, al momento dell'interpretazione per la programmazione delle prove di produzione, delle incertezze legate alla salinità dell'acqua di formazione da usare per il calcolo della Sw nei livelli arenacei.

Le PdP sono state programmate, quindi, in corrispondenza dei principali livelli arenacei e hanno interessato, dall'alto verso il basso, i seguenti intervalli:

PdP # 4

1976,5-2027,5 m con porosità dal 7 al 12% ed un net pay di circa 46 m

PdP # 3

2132-2171 m

con porosità dall' 9 al 12% ed un net pay di circa 18 m

PdP # 1 e # 2

2649-2676,5 m

con porosità dal 5 al 10% ed un net pay di circa 13 m

Le PdP # 3 e 4 sono risultate mineralizzate ad acqua con una salinità di 11 gr/lt NaCl eq. Le PdP # 1 e 2, eseguite sullo stesso livello, hanno evidenziato una mineralizzazione a gas e gasolina. Per quanto riguarda quest'ultimo livello, il CPI eseguito utilizzando la Rt registrata in cantiere (AIT-H a 90 pollici di investigazione) ha evidenziato, in corrispondenza di alcuni intervalli arenacei, delle Sw molto alte e non confermate dall'esito della prova.

Visto che i livelli attraversati dal pozzo sono caratterizzati da una giacitura con angoli molto elevati, si è ipotizzato l'incongruenza nel calcolo della Sw in corrispondenza degli intervalli di cui sopra: la Rt registrata in cantiere, quindi, risulta influenzata dall'effetto giacitura degli strati. Per questo motivo è stato richiesto a Schlumberger il reprocessing (MERLIN processing) delle curve acquisite in cantiere, che ha permesso di ottenere delle resistività più realistiche e di conseguenza un CPI più congruente con il dato diretto acquisito durante le PdP.

(Permesso AGIRA; SARCIS 100%)

PAG.	15 b	30			
AGGIORNAMENTI:					
0					

DIGE/GELG

5. 2 MANIFESTAZIONI

La società che ha fornito il servizio di mud logging è la Geoservices.

Profondità	Tipo	Gas tot.	C1	C2	C3	iC4	nC4	iC5
м		%	%	%	%	%	%	%
713	DG	1,83	1,6	0,138				
1067	DG	5,30	3,88	0,04	0,019			
1482	DG	2,50	2					
1800	DG	2,23	1,7	0,02				
1985	DG	2,10	1,5	0,036	0,02	0,001		
2725	DG	3,28	2,9	0,03	0,014			
2736	DG	5,99	5,317	0,06	0,028	0,006		
2745	DG	2,66	2,459	0,027	0,009			
2747	DG	1,92	1,848	0,019	0,007			
2381	DG	1,98	1,609	0,02	0,006			
3141	DG	2,30	1,84	0,014	0,008			
3170	DG	3,35	2,857	0,024	0,015			
3214	DG	1,57	1,134	0,008	0,005			
3274	DG	1,72	1,050	0,006	0,006			
3283	DG	1,70	1,16	0,078	0,063			
3306	DG	2,35	1,32	0,007	0,004			
3375	DG	1,57	1,08	0,006	0,004			
3521	DG	1,30	0,75	0,004				
3568	DG	0,93	0,65	0,03				

In previsione di basse concentrazioni di gas la suction rate è stata regolata a 4,54 SCF/H con l'obiettivo di aumentare la sensibilità della trap QGM.

fase 23"

da 50 m

a 503 m

In questo primo intervallo non ci sono state registrate manifestazioni per una probabile occlusione della gas trap QGM all'altezza dello splash disk.

fase 16"

da 503 m a 1513 m

(Permesso AGIRA; SARCIS 100%)

AG(AGGIORNAMENTI:					
0		l				

PAG. 16 DI 30

DIGE/GELG

In questa fase il BGG ha oscillato con valori dallo 0,5 allo 1,5%, alcuni picchi di gas hanno caratterizzato questa fase ma si sono rilevati senza significato minerario.

fase 12"1/4

da 1513 m a 2135 m

I valori del gas sono proseguiti abbastanza costanti intorno allo 0,5-0,8%, le poche manifestazioni di gas non sono state minerariamente significative.

fase 8"1/2

da 2135 m a 3217 m

Questa fase ha attraversato i principali obiettivi minerari del pozzo, in perforazione non ci sono state manifestazioni significative.

fase 6"

da 3217 m a 3688 m

I valori del background gas si sono sempre mantenuti attorno al valore di 0,8-1% con un decremento a valori intorno allo 0,4% da 3250 m.

In perforazione non sono state registrate manifestazioni con reale interesse minerario.

5. 3 WIRELINE TESTING

Non sono state eseguite misure wireline di pressione.

5. 4 PROVE DI STRATO

Non sono state eseguite prove di strato.

5. 5 PROVE DI PRODUZIONE

Il pozzo è stato oggetto di quattro prove di produzione che hanno interessato alcuni livelli arenacei del Flysch Numidico.

5. 5. 1 PdP # 1 : (2649 - 2659,5 / 2673 - 2676,5 m; CASED HOLE: Flysch Numidico)

Esito della prova: gas + gasolina.

La batteria di prova è riportata in fig. 9. Fluido in pozzo: fango LTIE76 1440 gr/lt.

Le operazioni di apertura degli intervalli di prova sono state eseguite discendendo in pozzo una batteria di fucili da 4"1/2 HSD 12 sh/ft con le aste di perforazione.

(Permesso AGIRA; SARCIS 100%)

PA	AG. TA	DI 3	30
AG	GIORI	NAME	NTI:
Λ			

DIGE/GELG

La prova è stata eseguita dal 09/11/1998 al 13/11/1998 utilizzando una batteria di prova composta da tubini da 3"1/2 e packer 7" fissato a 2620 m.

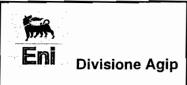
Le operazioni effettuate durante lo svolgimento della prova sono le seguenti:

- □ Disceso coiled tubing a 1000 m ed eseguito n. 2 lifts con N2 recuperando teorico interno string + sottopacker = 11 mc. Estratto coiled tubing.
- □ Acceso fiaccola ed eseguito spurgo con duse da 1/8". Durante l'erogazione (38,5 ore) i valori delle portate di gas, pressione di testa e pressione di fondo (S.R.O. a 2645 m) hanno evidenziato un progressivo decremento (Qgas =28000-25000 Smc/g; FTHP=195,7-182,3 Kg/cmq; FBHP=261,1-246,4 Kg/cmq). Il recupero di gasolina è stato di 250-300 lt/h (recupero totale 14,3 mc).
- □ Chiuso pozzo al choke manifold per risalita di pressione. Dopo 34 ore di risalita di pressione THP=212,1 Kg/cmq, BHP= 280,45 Kg/cmq.

In base ai risultati ottenuti durante la prova (mineralizzazione a gas e gasolina) si decideva di completare il pozzo in singolo selettivo (fig. 10) previa apertura con fucili 7" HSD 12 sh/ft degli intervalli 1997-2027,5 m; 1976,5-1987,5 m; 2132-2144,5 m e 2156,5-2171 m (discesa fucili effettuata con le aste di perforazione).

La prova è stata quindi ripetuta in modalità rig less con l'obiettivo di quantificare l'effettiva estensione del reservoir ed il suo potenziale minerario.

5. 5. 2 PdP # 2 : (2649 - 2659,5 / 2671 - 2676,5 m; CASED HOLE: Flysch Numidico)


Esito della prova: gas + gasolina.

La batteria di completamento del pozzo è riportata in fig. 10. Fluido in pozzo: Brine NaCl/CaCl2 1250 gr/lt.

La prova è stata eseguita dal 27/02/1999 al 04/03/1999.

Le operazioni effettuate durante lo svolgimento della prova sono le seguenti:

- Disceso coiled tubing a 1000 m ed eseguito n. 1 lift con N2 recuperando 3830 lt di brine.
- □ Accesa fiaccola ed eseguito erogazione di 2,5 h con duse 3/16": Qgas=54400 Smc/g; FTHP=176,2 Kg/cmq. Totale gasolina prodotto 1,26 mc.
- □ Chiuso pozzo per risalita di pressione: dopo 41 h, THP=225,5 Kg/cmq; BHP=297,9 Kg/cmq.
- □ Aperto pozzo in erogazione con duse 3/16" (durata 48 h). Durante l'erogazione i valori delle portate di gas, pressione di testa e pressione di fondo (S.R.O. a 2645 m) hanno evidenziato

(Permesso AGIRA; SARCIS 100%)

PAG. 18 DI 30
AGGIORNAMENTI:

DIGE/GELG

un progressivo decremento: Qgas=64900-40900 Smc/g; FTHP=207,7-129,64 Kg/cmq; FBHP=281,1-179,2 Kg/cmq). Il recupero medio di gasolina è stato di 350 lt/h (cumulativo totale prodotto durante la prova 19,54 mc).

□ Chiuso pozzo per risalita di pressione: THP=186,6 Kg/cmq (dopo 44 h), BHP=251 Kg/cmq (dopo 24 h).

Durante la prova non si è riusciti ad avere dei parametri di erogazione stabilizzati, si è stimata una depletion di circa 50 Kg/cm² a fronte di 48 ore di erogazione ed un cumulativo di gas prodotto pari a soli 104000 Smc.

Per l'interpretazione della prova si è utilizzato un modello di pozzo con Wellbore storage & skin in giacimento omogeneo del tipo a sistema chiuso ottenendo questi risultati:

Pressione statica iniziale di fondo

 $Pi = 302 \text{ Kg/cm}^2 \text{ ass. a m } 2645 \text{ m/TR}$

Pressione statica finale di fondo

Pf = $249.7 \text{ Kg/cm}^2 \text{ ass. a } 2645 \text{ m/TR}$

Capacità produttiva della formazione

kh = 44 mD x m

Coefficente wellbore storage

 $C = 0.05 \text{ m}^3/\text{Kg/cm}^2$

Skin totale

Stot = 26

Permeabilità della formazione

circa 3 mD

Il risultato più rilevante è legato alla depletion stimata in giacimento, infatti, con i due valori calcolati di pressione statica iniziale e finale si ottiene una depletion di circa 50 Kg/cm².

Considerato che la produzione cumulativa di gas durante la prova è stata di appena 104000 Sm³ se ne deduce che la consistenza del giacimento in termini di GOIP è di scarsa importanza (GOIP stimato 1MSm³).

5. 5. 3 PdP # 3 (2132-2171m; CASED HOLE: Flysch Numidico)

Esito della prova: acqua di strato.

La batteria di completamento del pozzo è riportata in fig. 10. Il livello è stato messo in produzione attraverso la valvola di circolazione a 2121,4 m del completamento definitivo ed ha prodotto in erogazione spontanea (duse 1/4") acqua di strato con una portata di 2000-3000 l/h, densità 1,02 Kg/l, salinità 11 g/l NaCl eq., ph 7,2.

Con la registrazione del profilo statico si sono ottenuti i seguenti dati:

SBHP 232,2 kg/cm² a 2121 m/TR

SBHT 62,5° C a 2121 m/TR

(Permesso AGIRA; SARCIS 100%)

AGGIORNAMENTI:

DIGE/GELG

5. 5. 4 PdP # 4 (1976,5-2027,5 m; CASED HOLE : Flysch Numidico)

Esito della prova: acqua di strato.

La batteria di completamento del pozzo è riportata in fig. 10. Il livello è stato messo in produzione attraverso la valvola di circolazione a 1952,5 m del completamento definitivo ed ha prodotto in erogazione spontanea (duse 1/8") con una portata di 700-800 l/h, acqua di strato con densità 1,01 Kg/l, salinità 11,3 g/l NaCl eq., ph 7,3.

Con la registrazione del profilo statico si sono ottenuti i seguenti dati:

SBHP 213,8 kg/cm² a 1952 m/TR

SBHT 62,5° C a 1952 m/TR

(Permesso AGIRA; SARCIS 100%)

PAG. 20 DI 30
AGGIORNAMENTI:
0

6 DATI GENERALI

6. 1 CAMPIONAMENTO LITOLOGICO

6.1.1 CUTTING

La Compagnia che ha fornito il servizio di mud logging è la Geoservices.

Le frequenze di campionamento e il numero di serie prelevate sono riportate nella tabella seguente:

foro	Tipo	Top metri	Bottom metri	Freq. camp.	N. serie
1	Lavati e non asciugati	60	1616	10 m	1
1	Mini head space	60	1050	50 m	1
1	«	1050	1590	30 m	1
2	Lavati e non asciugati	«	«	<<	1
2	Mini head space	«	880	50 m	1
1	Lavati ed asciugati	60	1616	10 m	3
2	Lavati ed asciugati	730	890	10 m	3
3	Lavati ed asciugati	550	1600	10 m	3
3	«	1600	1680	5 m	3
3	«	1680	2010	10 m	3
3	«	2010	3470	5 m	3
3	«	3470	3580	10 m	3
3		3580	3620	5 m	3
3	«	3620	3688	3 m	3
3	Lavati e non asciugati	550	1600	10 m	3
3	«	1600	1680	5 m	3
3	«	1680	2010	10 m	3
3	«	2010	3470	5 m	3
3	«	3470	3580	10 m	3
3	«	3580	3620	5 m	3
3	«	3620	3688	3 m	3
3	Mini head space	550	3688	30 m	

(Permesso AGIRA; SARCIS 100%)

PAG. **21** DI **30**AGGIORNAMENTI:

0

6.1.2 CAROTE DI FONDO

Non sono state eseguite carote di fondo.

6.1.3 CAROTE DI PARETE

Non sono state eseguite carote di parete.

6. 2 WELL LOGGING

6.2.1 LOG WIRE LINE

Le operazioni di Well logging sono state condotte dalla società Schlumberger.

Foro	Operaz.	Composizione Tool	Diametro	Тор	Bottom	Data	Durata	Efficienza
	n°		Foro	m	m		operaz.	%
1	1	BGL-GR	14"3/4	496	1187	19/07/98		100
3	2	AIT-AS-GR	12"1/4	1490	2131	17/09/98	16 ore	98,3
"	2	LDL-CNL-GR	«	1750	2131	«		
«	3	AIT-AS-NGS-OBDT	8"1/2	2125	3214	16/10/98	17 ore	100
"	3	CBL-VDL-CCL-GR	csg 9"5/8	1467	212	16/10/98		
«	4	AIT-BHC-GR	6"	3220	3648	01/11/98	11 ore	99,9
"	4	CBL-VDL-GR	«	2042	3210	«		
"	4A	GR-BHC	«	3545	3693	02/11/98	9 ore	100
«	4A	AIT-BHC-GR	«	3545	3693	03/11/98		

Operazione nº1:

L'efficienza è risultata del 100%.

Operazione regolare.

Operazione n°2:

L'efficienza è risultata del 98,3%.

Il GR è stato registrato fino a 370 m.

La registrazione dell'AS è stata caratterizzata da skipping con un'eccessiva separazione delle curve Delta-T e Delta -T comp. con valori di transit time non attendibili.

La porosità da density-neutron ha ulteriormente evidenziato che la porosità da sonic era sopravalutata del 100%.

Solo dopo processing eseguiti al termine della registrazione dei log si sono ottenuti dei Delta-T

(Permesso AGIRA; SARCIS 100%)

PAG. 22 DI 30
AGGIORNAMENTI:

0

attendibili.

Operazione nº 3:

L'efficienza è risultata del 100%.

Operazione regolare

Operazione n°4 e 4A:

L'efficienza è risultata del 99,9%.

L'operazione di registrazione log è stata caratterizzata da due discese, con la 1° relativa al log AITH-BHC-GR non è stato possibile raggiungere il fondo pozzo e durante la registrazione ci sono stati tentativi di presa del tool.

In superficie il tool risultava mancante dello stand-off inferiore dell'AITH, il centralizzatore del sonic ribassato di 20 cm, tre balestre senza la protezione in gomma ed infine è risultata deformata la parte metallica dello stand-off posto sotto la testina.

Dopo il controllo foro, è stato disceso il tool BHC-GR senza centralizzatori e senza stand-off mentre il 2° run era equipaggiato dei soli stand-off inferiore e superiore dell'AITH questo per diminuire al massimo le possibilità di presa.

Le due registrazioni sono state rappresentate in un unico documento.

6.2.2 LOG WHILE DRILLING

Le registrazioni di log Gamma Ray while drilling, tutte effettuate da Baker Hughes Inteq, sono riassunte nella tabella seguente:

Oper.	Composizione	Diametro	Тор	Bottom	Numero di	Note
n.	Tool	Foro	m.	m.	discese	
1	MWD-GR	14"3/4	1176	1601	2	perforazione
2	MWD-GR	8"1/2	2728	3208	3	perforazione
3	MWD-GR	6"	3217	3625	2	perforazione

Operazione nº1:

L'acquisizione dei dati è avvenuta in due run separati durante la perforazione del foro 1.

La qualità log è sufficiente, rispetto al log wireline i valori di Gamma Ray sono maggiori del 25%.

(Permesso AGIRA; SARCIS 100%)

PAG.	23 c	30
AGGIO	DRNA	MENTI:
0		

Operazione n°2:

L'acquisizione è avvenuta durante la perforazione del foro n°3, eseguita in tre run separati ed è stata caratterizzata da questi eventi:

registrato gamma ray da 2121 a 2192 m durante il ripasso precedente la ripresa perforazione.

Da 2192 a 2728 m non sono stati acquisiti dati causa il mancato funzionamento dell'MWD.

Registrato Gamma ray data da m 2728 a m 3208 in due run.

La qualità log è sufficiente, rispetto al log wireline i valori di Gamma Ray sono maggiori del 20%.

Operazione n°3:

1 :

L'acquisizione è avvenuta due run separati ed è stata caratterizzata da questi eventi:

Da 3117 a 3294 m i dati gamma ray sono stati acquisiti in real time mentre da 3294 a 3625 m sono stati recuperati in superficie dal downhole memory module a causa della rottura del real time decoder.

La qualità log è sufficiente, rispetto al log wireline i valori di Gamma Ray sono maggiori del 20%.

6. 3 CRONOLOGIA DELLE OPERAZIONI

	Descrizione
	Inizio tariffa operativa alle ore 12.00 del 10-06-98
10-06/14-06-98	Perforato fase 26" da 13 a 59 m. Disceso Csg 24"1/2, scarpa a 58 m ed eseguito
	cementazione sino a giorno.
14-06/25-06-98	Perforato fase 23" da 58 a 503 m senza particolari difficoltà.
	Disceso Csg 18"5/8 con scarpa a 498 m ed eseguito cementazione fino a giorno.
25-06/28-07-98	Spiazzato fango FWGEPO con LTIE80.
	Turboperforato fase 14"3/4 da 503 a 1616 m con difficoltà causa frana.
	Con fondo pozzo a 1616 m, durante l'estrazione in back reaming con presenza di
	frana al vibrovaglio, la batteria si prende a 1232 m.
	Eseguiti tentativi di liberarla con esito negativo. Restano in pozzo: bit-SDD-Roller
	Reamer-MWD (Gamma Ray)-Shock tool-Circ. sub-1 DC 9"1/2. Top pesce a 1193
	m (teorico).
	Eseguiti nº2 tappi di cemento (1185-1035 m; 860-710 m) per chiusura mineraria
	foro 1.

(Permesso AGIRA; SARCIS 100%)

PAG. **24** DI **30**

AGGIORNAMENTI:

0

	Descrizione
28-07/07-08-98	Foro 2
	Turboperforato in sliding per impostazione side track da 728 a 898 m.
	Sospeso perforazione causa la tendenza del foro 2 a rientrare nel foro 1, ese-
	guito tappo di cemento da 602 a 460 m per chiusura mineraria foro 2.
07-08/02-09-98	Foro 3 KOP a 544 m
	Turboperforato fase 16" da 544 a 1513 m talora con difficoltà causa detriti ai vagli.
	A 746 m causa assorbimenti (3,3 mc/h in statica) pompato cuscino di intasanti car-
	bonatici. Disceso Csg 13"3/8 a 1489 m ed eseguita cementazione fino a giorno.
02-09/23-09-98	Turboperforato fase 12"1/4 da 1513 a 2132 m.
	A 2080 m assorbiti 31 mc ed a 2132 m assorbiti 83 mc, controllato ed eliminato
	assorbimenti con l'utilizzo di intasanti carbonatici.
	Durante la perforazione appesantito fango da 1,52 a 1,70 Kg/l per eliminare i co-
	stanti problemi di instabilità del foro (costante presenza di frana al vibrovaglio).
	Registrato log Schlumberger.
	Turboperforato da 2132 a 2135 m, interrotto per assorbimenti, totale 95 mc.
	Disceso Csg 9"5/8 a 2130 m e cementato in due stadi. Assorbiti durante la discesa
	del casing 8 mc e durante le operazioni di cementazione 15 mc di fango.
23-09/21-10-98	Perforato fase 8"1/2 da 2135 a 3217 m.
	Durante questa fase non ci sono stati particolari problemi di assorbimento (4 mc in
	perforazione a 2155 m), rilevata occasionalmente presenza di frana ai vagli.
	Aumentato il peso del fango da 1,5 a 1,6 Kg/l. Registrato log Schlumberger.
	Durante la circolazione con bit al fondo il pozzo va in assorbimento sino ad un to-
•	tale di 50 mc, utilizzato intasanti carbonatici tali da permettere il proseguo delle
	operazioni.
	Disceso liner 7" a 3215 m (assorbiti 38 mc di fango) ed eseguita cementazione in
	due stadi (assorbiti 78 mc di fango).
21-10/06-11-98	Perforato fase 6" da 3217 a 3688 m
	Dopo aver alleggerito il fango da 1,6 a 1,4 Kg/l si è perforata la fase con un solo
	problema dovuto all'assorbimento iniziato a 3632 m e proseguito sino a fondo poz-
	zo, totale 95 mc.
	Registrato log Schlumberger.

(Permesso AGIRA; SARCIS 100%)

PAG. 25 DI 30
AGGIORNAMENTI:

Descrizione Eseguito 1º tappo di cemento da 3688 m a 3540 m per chiusura mineraria. Eseguito 2º tappo di cemento da 3260 m a 3170 m per chiusura mineraria. Fissato Bridge plug a 3154 m. Eseguito 3° tappo di cemento da 3154 m a 3050 m per chiusura mineraria. 07-11/14-11-98 Eseguito PT # 1: 2649 - 2659,5 / 2673 - 2676,5 m 08-11/01-12-98 Aperto intervalli di prova in TCP, disceso completamento singolo selettivo su tre livelli, montato croce di produzione Rilascio impianto alle 18.00. 01-12-98 ATTIVITA' RIG LESS 22-01-99 Inizio attività rig less 27-02/05-03-99 Eseguito PT # 2: 2649-2659,5 / 2673-2676,5 m Eseguito PT # 3: 2132-2144,5 / 2156,5 - 2171 m 05/08-03-99 08/10-03-99 Eseguito PT # 4: 1976,5 - 2027,5 m Ultimato attività rig less. 10-03-99

6. 4 TRAIETTORIA DEL POZZO

La perforazione dei pozzi in area di catena ha sempre evidenziato una tendenza del foro a scostarsi in modo sensibile dai dati di progetto, per effetto della giacitura degli strati e la natura dei litotipi attraversati creando delle traiettorie con deviazioni accentuate.

Il pozzo è stato perforato con l'utilizzo della tecnologia SDD (Straigth Drilling Device) fino alla profondità di 1616 m, per ottenere un andamento verticale del pozzo per l'esecuzione di un lean profile di tubaggio. Questa fase è stata caratterizzata da problemi di instabilità del foro. Durante l'estrazione del bit, eseguita in back reaming con abbondante frana ai vagli, la batteria si prendeva a 1232 m. Il 1° foro (TD a 1616 m) è stato abbandonato, quindi, a causa degli infruttuosi tentativi di liberare la batteria.

La perforazione del 2º foro con KOP a 728 m, è stata sospesa a 898 m a causa della tendenza del foro a rientrare nel foro 1.

Il 3° foro con KOP a 547 m, ha avuto un dog leg max di 3,5°/30 m con una inclinazione max di 7,7° a 576 m, quest'ultima è progressivamente diminuita riportandosi sulla verticale da 930 a

(Permesso AGIRA; SARCIS 100%)

PAG. 26 D	30
AGGIORNAI	MENTI:
^	

DIGE/GELG

2130 m mentre lo scostamento ha avuto un incremento progressivo sino ad arrivare a 44 m dalla verticale alla stessa profondità.

Da 2130 a 2740 m non sono stati registrati dati a causa del mancato funzionamento dell'MWD. Il mancato controllo dell'andamento del foro unita alla naturale tendenza del foro a scostarsi dalla verticale ha fatto sì che con la ripresa delle misure di deviazione a 2740 m il foro avesse un inclinazione di 14°, direzione S66,5°E ed uno scostamento di 65 metri.

I dati OBDT (Schlumberger) indicano che la tendenza allo scostamento inizia a 2200 m con un trend di inclinazione costante sino a 2625 m che va da 0 a 12° con azimut costante di 120°.

La perforazione è proseguita con un incremento dell'inclinazione progressivo raggiungendo la profondità finale in fase 6" a 3688 m (TVD=3635,2 m), con scostamento dalla verticale di 343 m, azimut di 125,2° ed un angolo max a TD di 20,8°.

I dati di deviazione sono rappresentati in fig. 14 e 15. L'andamento verticale e orizzontale del pozzo sono rappresentati in fig. 16.

6. 5 FANGO DI PERFORAZIONE

Foro	Diametro	Profondità	Tipo	Densità	Viscosità	Lamium
	Inch	m ·		g/l	sec	%
1	28"	9-59	FWGE	1100	69	
1	23"	59-503	FWGEPO	1120	58	
1	14"3/4	503-1616	LTIE74	1120-1128	50	60,5
2	12"1/4	728-898	LTIE78	1450	60	16
3	16"	547-1160	LTIE78	1400-1440	55	56
3	16"	1160-1514	LTIE76	1500	57	60
3	12"1/4	1514-2030	ÇC	1550	56	63
3	12"1/4	2030-2131	LTIE80	1700	57	61
3	8"1/2	2131-3215	LTIE78	1500-1560	65	61,5
3	6"	3215-3635	u	1400-1440	58	59

(Permesso AGIRA; SARCIS 100%)

PA	.g. 27	DI 3	30				
AGGIORNAMENTI:							
0							

6. 5.1 ASSORBIMENTI E PERDITE DI CIRCOLAZIONE

Foro 3, fase 16"

Quest'unica perdita di circolazione è avvenuta in perforazione nel Flysch Numidico ed è stata eliminata con un cuscino di 15 mc al 5% di intasanti carbonatici.

Profondità	Operazione	Assorbi	menti m ³	Fango	LTIE	Note
Damam		parziali	cumulativi		75	
			:	D=g/l	V=sec	
746	perforazione	30	30	1400	64	in statica 3,3 mc/h

Foro 3, fase 12"1/4

La fine fase (2080-2135m) è stata caratterizzata da perdite di circolazione ed assorbimenti nell'intervallo, sia durante la turboperforazione che durante le operazioni di tubaggio e cementazione della colonna 13"3/8 per un totale di 232 mc di fango LTIE70.

Queste perdite sono state controllate con l'ausilio di intasanti carbonatici.

L'entità degli assorbimenti è stata di 4 mc/h in statica ed i scarsi risultati ottenuti con l'utilizzo degli intasanti carbonatici non ha permesso il proseguo delle operazioni.

Profondità	Operazione	Assorbimenti m ³		fango	LTIE 70	Note
m		parziali cumulativi		D=g/l	V=sec	·
2080	Perforazione	31	31	1700	58	Flysch Numidico
2131-2135	"	178	209	«	«	«
2135	Tubaggio 13"3/8	8	217	«	«	«
2135	Cementazione	15	232	«	«	«

Foro 3, fase 8"1/2

Anche questa fase è stata caratterizzata da assorbimenti ed esattamente a m 2165 per un totale di 4 mc di fango ed a fondo pozzo m 3217 per un totale di 166 mc.

Gli stessi sono stati controllati con l'ausilio di intasanti carbonatici.

(Permesso AGIRA; SARCIS 100%)

PA	G.	28	DI	30				
AGGIORNAMENTI:								
0								

Profondità	Operazione	Assorbin	nenti mc	fluido	LTIE 74	Note
m		Parziali (cumulativi	D=g/l	V=sec	
2165	Perforazione	4	4	1600	58	Flysch Numidico
3217	Circolazione	50	54	1600	65	«
3217	Tubaggio	38	92	«	«	«
3217	Cementazione	78	170	«	«	«

Foro 3, fase: 6"

Questa fase è stata caratterizzata da un unico assorbimento iniziato a m 3632 e proseguito sino a fine fase per un totale di 95 m³ di fango LTIE77.

L'entità dell'assorbimento è stato da 2 a 6 mc/h ed in perforazione è stato controllato con l'utilizzo di cuscini con intasanti carbonatici.

I log indicano l'intervallo interessato dall'assorbimento da 3630 a 3638 m.

profondità	Operazione	assorb	menti mc	fluido	LTIE 77	note
m		parziali	cumulativi	D=g/l	V=sec	:
3632-3688	perforazione	95	95	1440	60	Flysch Numidico

SITUAZIONE POZZO A RILASCIO IMPIANTO

								i			Cemento	
		Oper	hole				Ų	asing				
metri	Fase	top	bottom	fango	tipo	diametro	lb/ft	grado	top	bottom	top	bottom
		metri	metri	Kg/l			_					
M.D.	32"	Giorno	14		СР	32"			giorno	14		
V.D.												<u></u>
M.D.	28"	14	59	FWGE	csg	24"1/2	162	J-55	giorno	58	giorno	58
V.D.				1,1						400	-	400
M.D.	23"	59	503	FWGEPO	csg	18"5/8	96,5	N-80	giorno	498	0	498
V.D.			503	1,12						1.700	0	1.400
M.D.	16"	503	1513	LTIE77	csg	13"3/8	68	L-80	giorno	1489	1000	1489
V.D.		503	1511,3	1,52							107	0400
M.D.	12"1/4	1513	2135	LTIE79	csg	9"5/8	53,5	L-80	giorno	2130	1467	2130
V.D.		1511,3	2133	1,70							<u> </u>	

DIGE/GELG

POZZO: SANTA VENERE 1 (3° Foro)

(Permesso AGIRA; SARCIS 100%)

30

AGGIORNAMENTI:

0

M.D.	8"1/4	2135	3217	LTIE78	Inr	7"	29	L-80	2047	2734	2165	3215
V.D.		2133	3192	1,60								
M.D.	6"	3217	3688	LTIE78	inr	7"	32	P110	2734	3215		
V.D.		3192	3635	1,44								

		Тар	pi			Spa	ri		E	Bridge plu	g
metri	Tipo	Тор	Bottom	test	top	bottom	SPF	status	tipo	Modello	profondità
		m	m	psi	metri	metri					metri
M.D.	Cemento	3688	3540	no	1976,5	1987,5	12	aperti	Halliburton	7" EZ-SV	3154
V.D.											
M.D.	Cemento	3260	3120	no	1997	2027,5	12	aperti	-		
V.D.											
M.D.	Cemento	3050	3154	no	2132	2144,5	12	aperti			
V.D.											
M.D.					2156,5	2171	12	aperti			
V.D.											
M.D.					2649	2659,5	12	aperti			
V.D.								1			·
M.D.					2673	2676,5	12	aperti			
V.D.											

		Comp	letamento				
Tubing	tipo	lb/ft	grado	top a	metri	bottom a metr	
3"1/2	AMS	MS 12,7		1	1	2603,4	
2"7/8	OJD	6,5	L80	260	3,4	2622,33	
·	•	P	acker				
Nom O.D.			1	tipo	pro	fondità a metri	
9"5/8		Baker	FH 51A2	47 - 53,5 lb/ft	1930,72		
7"		Baker	FH 47B2	26 - 29 lb/ft		2111,16	
		Baker	FH 47B2	26 - 29 lb/ft		2601,86	

(Permesso AGIRA; SARCIS 100%)

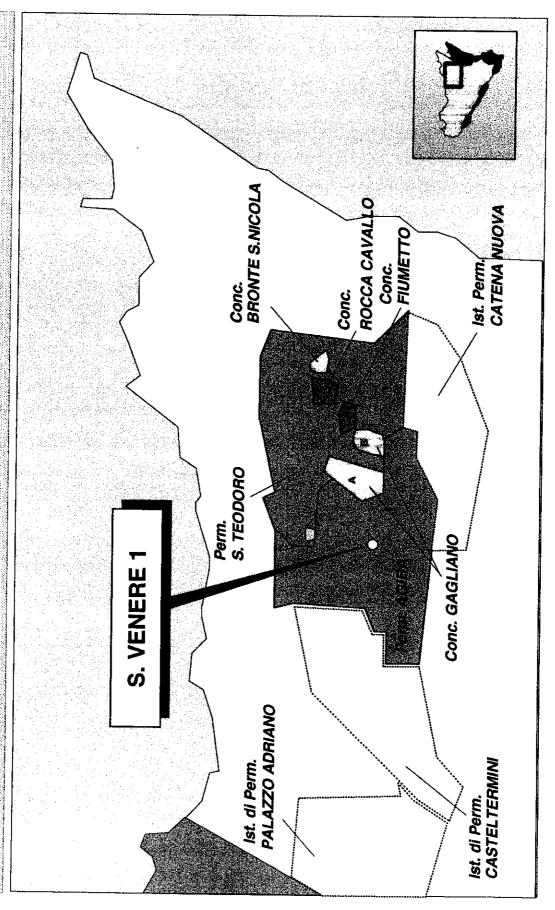
PAG.	30	DI	30	
AGGIC)RN	AM	ENTI:	

0

Bibliografia:

per la stesura della relazione finale del pozzo è stato fatto riferimento ai seguenti documenti:

Relazione n°01/99: Risultati DST n°1, 09-12/11/99, GEIP.


Relazione n°07/99: Risultati delle prove di accertamento minerario, GEIP.

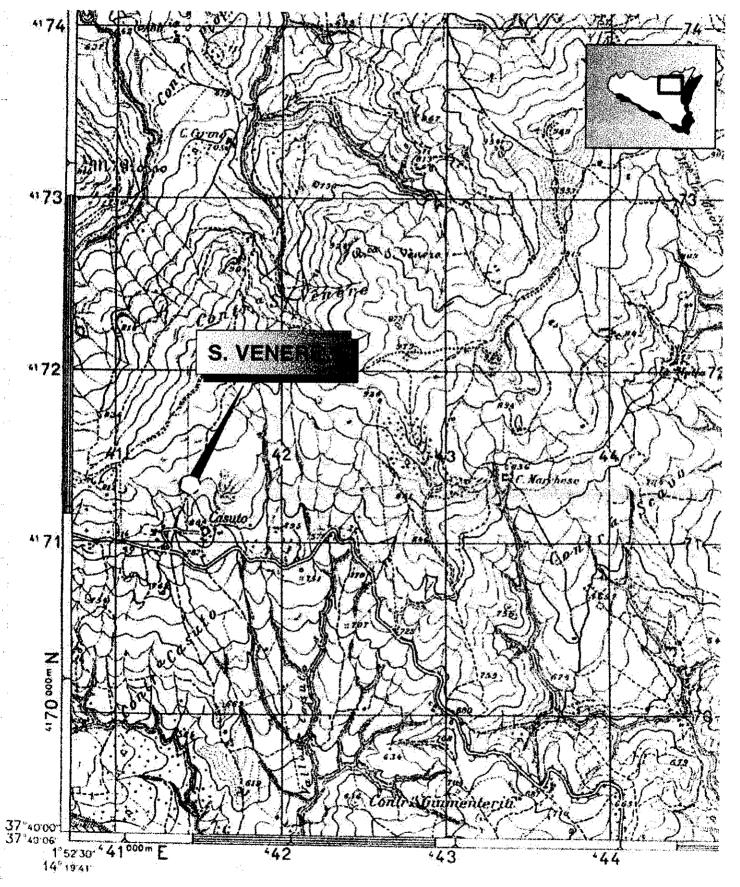
Geoservices: Mud Logging Services - Rapporto finale.

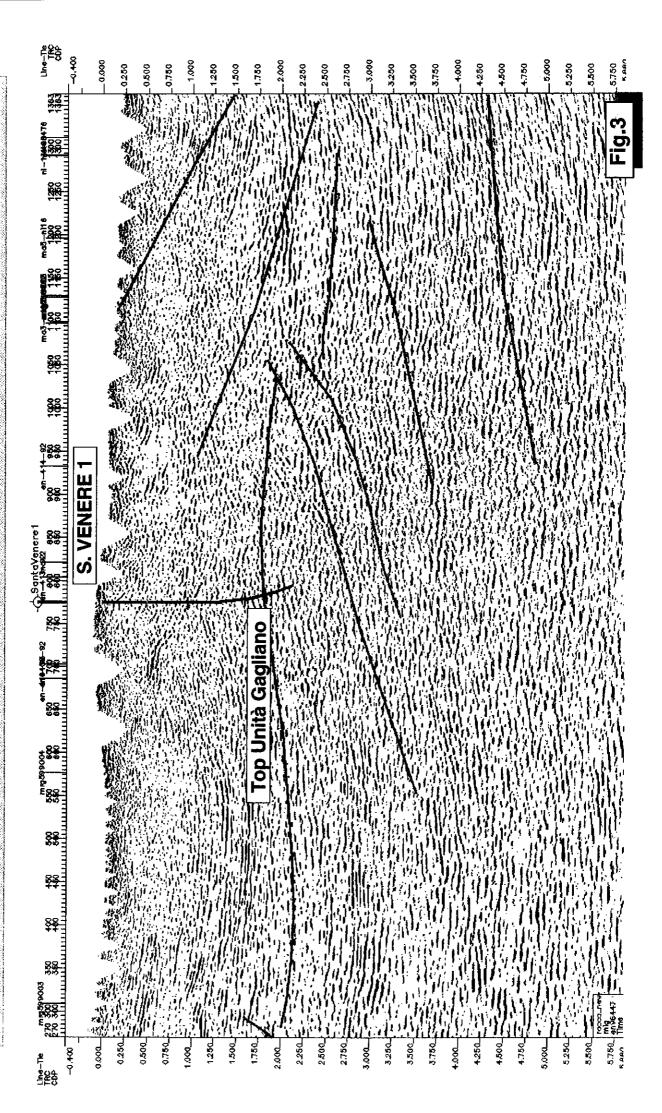
Permesso AGIRA Pozzo S. VENERE 1 CARTA INDICE

(40) - 10

DIGE / GELQ - Marzo 2009

GETTELSE STEELE OF THE S. VENERE (




Fig. 2

ENI S.p.A. Divisione Agip

Pozzo S. VENERE

Linea Sismica EN 96447

ENI S.p.A. Divisione Agip

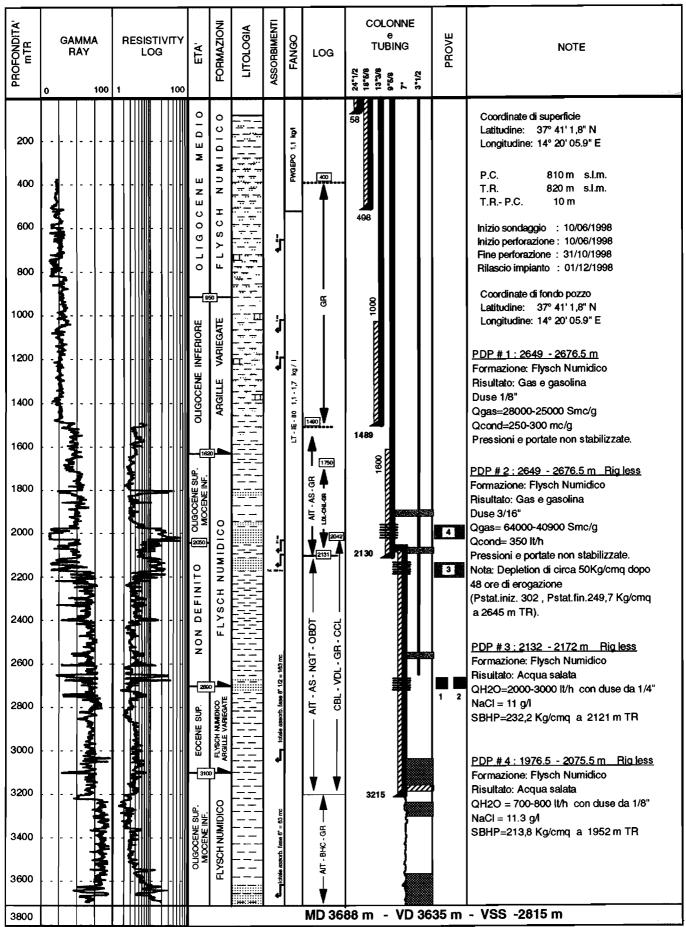
Permesso AGIRA

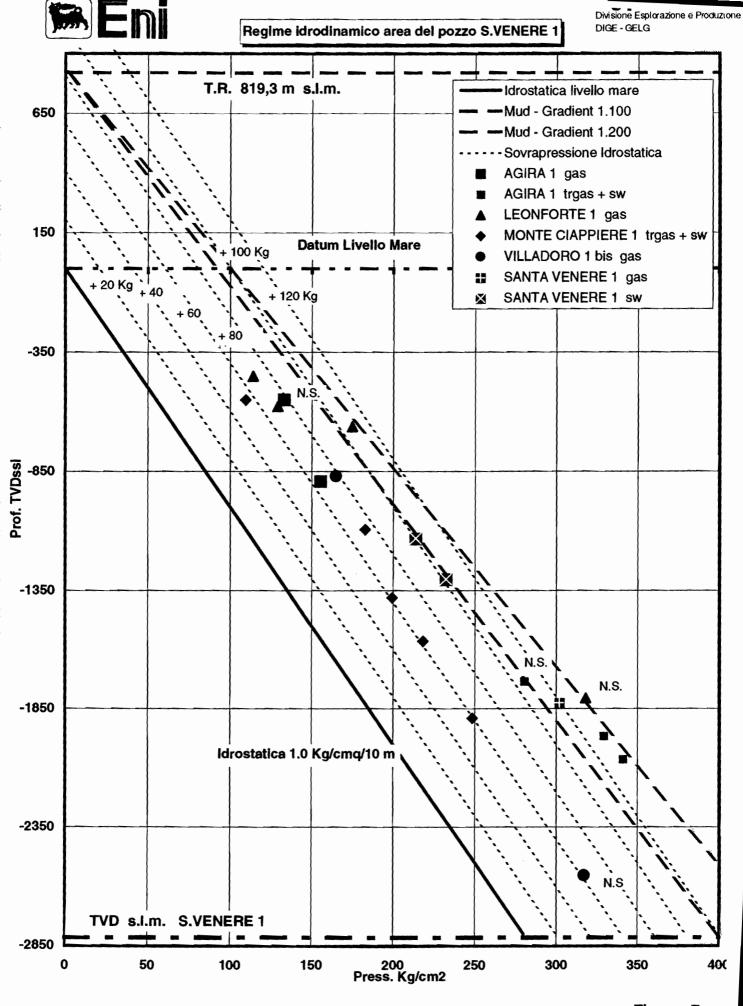
Pozzo S. VENERE 1



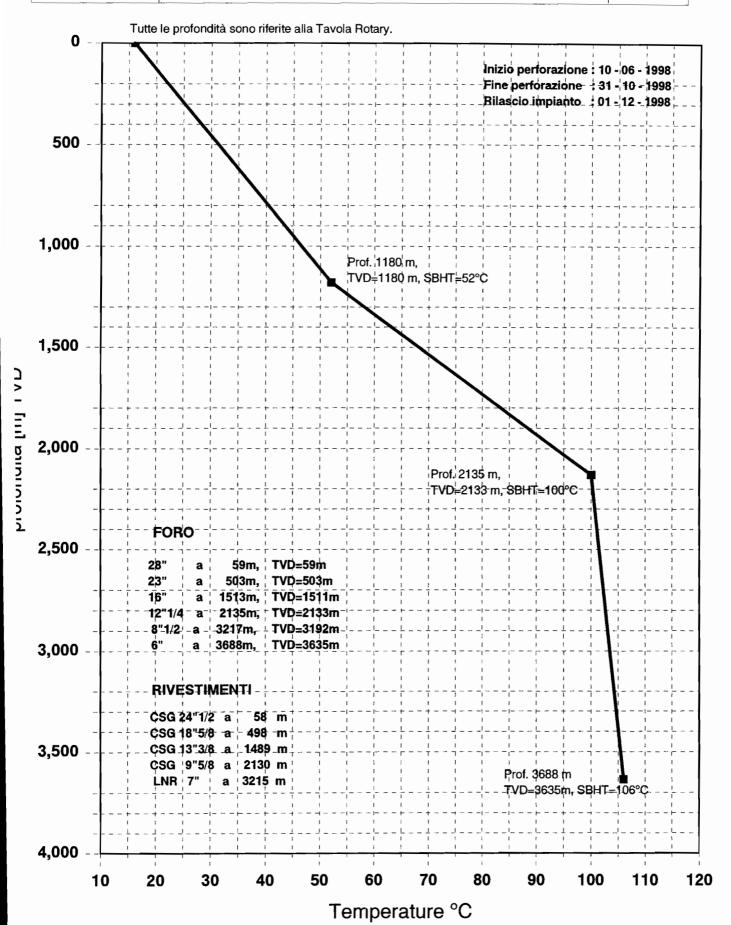
ENIS.p.A. Divisione Agip

Permesso AGIRA Pozzo S. VENERE 1 PROFILO LITOSTRATIGRAFICO PREVISTO E REALE



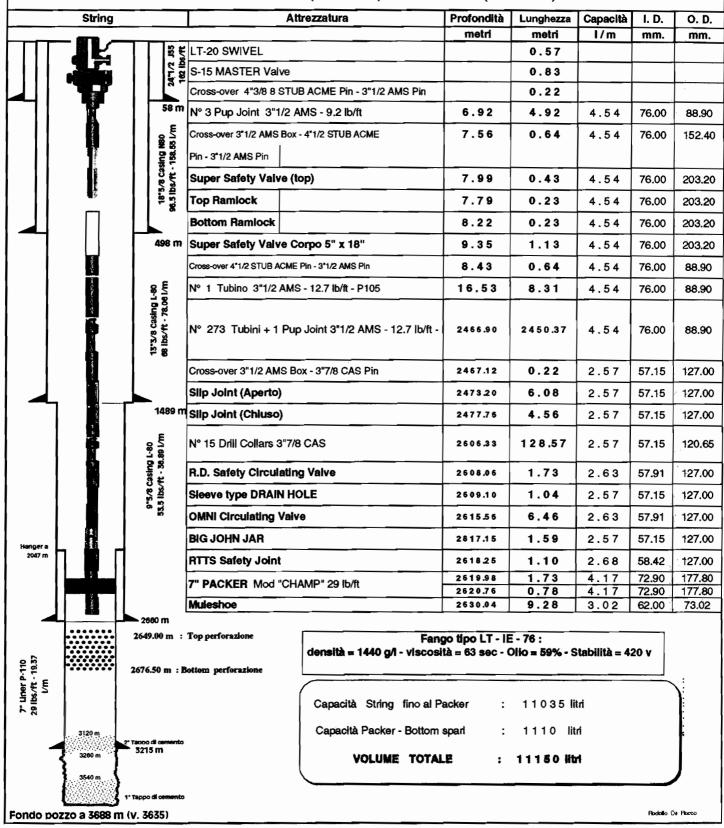


S. VENERE 1 (3° FORO) Permesso Agira



S. VENERE 1 PROFILO DI TEMPERATURA

Fig.8



Pozzo: SANTA VENERE - 1

PDP#1

Intervallo da 2649 (v. 2643.92) a 2676.50 m (v. 2670.04)

Eni Agip

WELL SITUATION

(COMPLETION)

FIELD NAME	AGIRA	

WELL NAME SANTA VENERE 1 (3° FORO)

District/A	ffiliate C	ompai	٠ ١	DATE:		30/11/	98	ARP	0 20 /	С	C	ost cent	er 40	2010	/ 40389	91 / 309	9000			
SINGLE	COMPI	LETIO	=			DU	AL COMPLI	ETION			SELECTIVE									
VERTICA	AL		1			DE\	VIATED HORIZON							ΓAL						
String weight	t up		54	[t]		Open hole /	hole / Slotted Casing Size: [in] Type of						f packer flu	acker fluid BRINE (NaCVCACI2)						
String weight	t down		40	(t)	L-	Тор:	[m]	Bottom:		[[m]	Density	y: 1,25 CON 0,3% DI INCORR [kg/l]							
Make up repo	ort _	TAGLI	A 14 T	ONS [y/n]	$\neg \Gamma$	Liner hanger	r type	7"							TOP	at	2047	[m]		
						PRODUCTI	ON CASING													
Nom O.D.			Thread	i		lb/ft	Steel	Grade		Top (m)		Bott	om (m)	<u> </u>	_					
9 5/8			MS		\perp	53,5	L80			HEAD			30			Ĭ	1 .			
<u></u>			MS_		+		L80	_	_	2047			734	11						
7"		A	MS		+	32	P110			2734		352	215							
		LONG	STRI	NG				s	HORT	STRING	<u></u>									
Tubing									Tu	bing				H	Χo					
Nom. O.D.	Thread			Steel Gr.	%	Down to	Nom. O.D.	Thread	16/1	t Ste	el Gr	r. %	Down to		Χo]				
	AMS	12,7		P105	7-A	·														
2 7/8	PJD	6,5		L80	<u> </u>	2622,33									P J XO	1				
	<u> </u>		\rightarrow											Н) Ž	i				
		+-	\rightarrow		-	-				-					XQ					
		_ <u>'</u>	acker					<u> </u>	Pa	cker		!	!	-	<u> </u>	\geq	-			
Nom O.D.	Manu		1	Model type		Depth	Nom O.D.	Manufa			del ty	pe	Depth		$\widetilde{\overline{w}}$					
9 5/8	BAKER			1A2 47-53		1930,72						,				1	1976	= ∥		
	BAKER		FH 47	7B2 26-2	9#	2111,16			[]]			1987	= "		
7"	BAKER		FH 47	7B2 26-2	9#	2601,86			ļ								2027	.5		
NOTA:LO SI	UE 4 D D			TOE DAG										H						
E' DI 40.000 I		ELEAS	E DEI	TRE PAC	KER									ł	(0)					
2 01 40.000			+			-								-	PI		1			
FISS. PKR S	ELETTIV	/O 100)O/200X	0/2600 PS	 I				- i			_			XU					
															XC			ĺ		
									İ				!	11	00	ļ 				
			ools							ois	:						L			
BPV TSB-1	Tools in	noie		MIN.	. I.D.	Depth 9,33		Tools in he	oie		M	in. I.D.	Depth		1	L	2132			
TBG HANGE		 15				9,33					-		-	i	1		2144.5			
SAFETY VAL			2,31	58.	67	-	NOTA: DUR	ANTE LA D	ISCE	SA DEL	CON	/PLETA	MEN=		ΔΔ		2156.5			
V'''OLA CI				58,6		1927,75	TO, (DOPO	AVER DIS	CESC	IL PAC	KER	DA 9"5	<i>(</i> 8)		1 00					
المر OLA CI				58,6	7	1952,48	LA GOMMA	TERGIAST	E UTI	LIZZATA	A PE	R								
VALVOLA CI				58,6			PROTEZION				LE C	OGGET	TI	1						
VALVOLA CI VALVOLA CI			_	58.6 58.6			VENIVA TRA				ANIA	JI II LIC								
SN "F" 2,25"	RC. CIVI	0 2,3	<u> </u>	57,15			TRA PACKE								우 ; YC					
TBG 2 7/8 -H	ALF MUI	LE SH	DE.	59:1		2622,33				- 111111	1				XI	\times				
						<u> </u>		-							χo					
																, F	2649			
NOTA: SAFE			ŒR "A	F PROF	LE n	natricola 187	7843-2				_						2659.5			
NIZIO APER			TEGI		<u> </u>						-						2673 2676.5			
APERTUR. T				A SULLP	31=C	<u></u>					+					l				
CHIUSURA C						+					+					<				
		erforat		ervai				Pei	forate	d interv	al	!		L						
Top (m)		Bottom	n (m)		Lev	/ei	Top (m)	8	ottom	(m)		Leve	əl	Supe	rvisor					
1976,5		1987	7,5	FLYSC	H NL	MIDICO														
1997		2027				MIDICO								F.	SIRCH	IIA - Gl	FORCA	TI		
2132		2144				MIDICO	_													
2156,5 2649		217		i		MIDICO								Supe	rintend	1110	////			
2673	_	2659 2676				JMIDICO JMIDICO		_							./		1/2/	. /		
														/	/Y					

ENI S.p.A Divisione Agip

LACH - Laboratori di Reservoir Engineering e Production Chemistry

S.Donato Milanese,

09/04/99

BOLLETTINO N.

115 / 99 LACH (Gas)

Campione di gas proveniente dal pozzo SANTA VENERE 1 . Prova di produzione n 2 . Campione 1 .

Dati di campionamento												
Intervallo: m	2649-2659.5 / 2673-2676.5	Portata:	41100 Sm3/g	giorno	_							
Punto di prelievo :	Separatore	Press. :	4.5 bar	Temp.:	20 ° C							
Data di prelievo :	03/03/99	Data di arrivo :	31/03/99									
Prelevato da:	DIGE GELC	Bombola n.:	187996									
	Risultati analitic	·		•								

	Risultati a	inalitici	
COMPOSIZIONE CEN	ITESIMALE	CARATTERISTICHE FISIC	HE CALCOLATE
(gascromatografia)		a 15 ° C e 1.01325 bar	
	%mol	Fatt. Comprimib.	0.9968
Azoto	0.26	Densita` (aria=1)	0.6815
Anidride carbonica	0.17	Massa Volumica kg/m3	0.8352
Idrogeno solforato	0.3 ppm	Potere calorifico superiore	
Metano	89.05	kcal/m3	10701
Etano	2.92	kJ/m3	44803
Propano	2.98	Potere calorifico inferiore	
I-Butano	1.47	kcal/m3	9689
N-Butano	1.34	kJ/m3	40566
Neo-pentano	0.01	Indice di Wobbe	
I-Pentano	0.78	kcal/m3	12962
N-Pentano	0.40	kJ/m3	54269
Esani	0.43		
Eptani	0.15	Aria 0.20 % mol .	
Ottani +	0.04	L' idrogeno solforato è stato o ANALIZZATORE GEOTECHI	

Il Tecnico Analista

ENI S.p.A Divisione Agip

LACH - Laboratori di Reservoir Engineering e Production Chemistry

S.Donato Milanese,

09/04/99

BOLLETTINO N. 114 / 99 LACH (Gas)

Campione di gas proveniente dal pozzo SANTA VENERE 1 . Prova di produzione 2 . Campione 2 .

Risultati analitici

Dati di campionamento												
Intervallo: m 2649-2659.5 / 2673-2676.5 Portata: 41200 Sm3/giorno												
Punto di prelievo :	Separatore	Press. :	4.5 bar	Temp.:	22 ° C							
Data di prelievo :	03/03/99	Data di arrivo :	31/03/99									
Prelevato da :	DIGE GELC	Bombola n. :	187995									

COMPOSIZIONE CEN (gascromatografia)	NTESIMALE	CARATTERISTICHE FISICHE CALCOLATE a 15 ° C e 1.01325 bar						
	%mol	Fatt. Comprimib. 0.9968						
Azoto	0.00	Densita` (aria=1) 0.6785						
Anidride carbonica	0.16	Massa Volumica kg/m3 0.8315						
Idrogeno solforato	0.4 ppm	Potere calorifico superiore						
Metano	89.42	kcal/m3 10699						
Etano	2.91	kJ/m3 44795						
Propano	2.97	Potere calorifico inferiore						
I-Butano	1.46	kcal/m3 9687						
N-Butano	1.33	kJ/m3 40558						
Neo-pentano	0.01	Indice di Wobbe						
I-Pentano	0.77	kcal/m3 12989						
N-Pentano	0.39	kJ/m3 54382						
Esani	0.40							
Eptani	0.14	Aria 2.58 % mol .						
Ottani +	0.04	L' idrogeno solforato è stato determinato mediante ANALIZZATORE GEOTECHNICAL INSTRUMENTS:						

II Tecnico Analista

Divisione esplorazione e produzione LACH - Laboratori di Chimica, Fisica & Reservoir

San Donato Milanese, 13.10.1999

BOLLETTINO D'ANALISI ACQ99.13

Campioni di acqua del pozzo SANTA VENERE 1 DIR

Intervallo

Punto di prelievo Data di prelievo Testa pozzo

Data di arrivo

24.03.1999

Inviato da DIGE

DETERMINAZIONI ANALITICHE

Camp.	Data del	Ora del	P.d.P.	Lift	Intervallo	Salinità come NaCl	pН
n.	prelievo	prelievo	. n.	n.	m	mg/L	
1	07.03.1999	06.00	. 3	In erogazione dopo Lift n.3	2132-2172	12900	6.92
2	07.03.1999	12.00	[*] 3	Fine erogazione	2132-2172	11000	7.22
3	09.03.1999	06.00	. 4	Dopo 12 h. di erogazione	1976.5-2027.5	11400	7.54
4	09.03.1999	09.30	4	Dopo 15.30 h. di erogazione	1976,5-2027,5	11300	7.30

Il Tecnico Analista

Jole Torru

	Agip	Well I	Data ver	sus Mea	sured Dept	:h								02/01 Pag.	11:1
Pla Wel		ster: SVEN		NTA VENI		10-	*						!		
		rd. : LAT.	37^ 4	1' 1.80	NERE 1 (: 00" N	r foro,									
Mag	netic Dec	LONG 1.: 1.3		2' 57.5(oj. Ang]		00									
RKB		: 10.0		ound Lev											
N.		DEPTH	war	DRIFT	AZIMUTH						COORD.			T001	L UNCE
UR.	MEASURED (m)	VERTICAL (m)	MSL (m)	 (deg)	GEOG.	NORTH (m)		NORTH (m)	EAST (m)				SEVERITY	TYPE	
		II		li		.i	i	1	1	!	(deg) 	(m)	(deg/30m)) (m
0	.0 196.0	.0 196.0	-820.0 -624.0	.00 1.50	S90.00E S56.34W	****** -1.42	-2.14	.0	.0		******		.00		
2	360.0	359.9	-460.1	2.50	N80.66W	61	-5.32	-1.4 -2.0	-2.1 -7.5	2.6 7.7	236.3 254.8		.23	SS SS	1. 2.
3	477.0	476.8	-343.2	2.20	S85.00W	.22	-4.76	-1.8	-12.2	12.3	261.6		.17	SS	3.
4 5	503.0 508.0	502.8 507.8	-317.2 -312.2	2.60 2.20	S85.00W S85.00W	09 02	-1.08 21	-1.9 -1.9	-13.3 -13.5	13.4 13.6	261.8		.46	sd	3.
6	517.0	516.8	-303.2	1.70	S85.00W	03	31	-2.0	-13.8	13.0	261.9 262.0		2.40 1.67	sd sd	3. 3.
7	524.0	523.7	-296.3	2.20	S77.00W	04	23	-2.0	-14.0	14.2	261.9	-14.0	2.43	sd	3.
8 9	527.0 537.0	526.7 536.7	-293.3 -283.3	1.10 .60	S85.00W S85.00W	02 01	08 15	-2.0 -2.0	-14.1 -14.3	14.3 14.4	261.9 261.9		11.21	sd	3.
10	546.0	545.7	-274.3	.10	S85.00W	.00	05	-2.0	-14.3	14.4	262.0	-14.3	1.50 1.67	sd sd	3. 3.
11	556.0	555.7	-264.3	.00	S85.00W	.00	01	-2.0	-14.3	14.5	262.0	-14.3	.30	sd	3.
12 13	565.0 594.0	564.7 593.7	-255.3 -226.3	.00	S85.00W S85.00W	.00	.00	-2.0 -2.0	-14.3 -14.3	14.5	262.0 262.0	-14.3	.00	sd	3.
14	624.0	623.7	-196.3	.00	S85.00W	.00	.00	-2.0	-14.3	14.5 14.5	262.0	-14.3 -14.3	.00	sd sd	3. 3.
15	654.0	653.7	-166.3	.00	S85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	3.
16	683.0	682.7	-137.3	.00	S85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	3.
L7 L8	712.0 7 41. 0	711.7 7 4 0.7	-108.3 -79.3	.00	S85.00W S85.00W	.00	.00	-2.0 -2.0	-14.3 -14.3	14.5 14.5	262.0 262.0	-14.3 -14.3	.00	sd sd	3,
9	770.0	769.7	-50.3	.00	S85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	3.
0	798.0	797.7	-22.3	.00	S85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	3.
21	827.0 856.0	826.7 855.7	6.7 35.7	.00	S85.00W S85.00W	.00	.00	-2.0 -2.0	-14.3 -14.3	14.5 14.5	262.0 262.0	-14.3 -14.3	.00	sd sd	3.
23	885.0	884.7	64.7	.00	S85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	4.
4	912.0	911.7	91.7	.00	S85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	4.
5 6	941.0 970.0	940.7 969.7	120.7 1 4 9.7	.00	S85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	4.
7	999.0	998.7	178.7	.00	S85.00W S85.00W	.00	.00	-2.0 -2.0	-14.3 -14.3	14.5 14.5	262.0 262.0	-14.3 -14.3	.00	sd sd	4.
8	1027.0	1026.7	206.7	.00	S85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	4.
9	1055.0	1054.7	234.7	.00	S85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	4.
10	1083.0 1111.0	1082.7 1110.7	262.7 290.7	.00	S85.00W S85.00W	.00	.00	-2.0 -2.0	-14.3 -14.3	14.5 14.5	262.0 262.0	-14.3 -14.3	.00	sd sd	4.
32	1140.0	1139.7	319.7	.00	\$85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	4.
33	1168.0	1167.7	347.7	.00	S85.00W	.00	.00	-2.0	-14.3	14.5	262.0	-14.3	.00	sd	4.
8 4 85	1197.0 1226.0	1196.7 1225.7	376.7 4 05.7	.26 .25	S85.00W S85.00W	01 01	07 13	-2.0 -2.0	-14.4 -14.5	14.5 14.7	262.0 262.0	-14.4 -14.5	.27	sd sd	4.
6	1256.0	1255.7	435.7	.00	S85.00W	01	07	-2.0	-14.6	14.7	262.0	-14.5	.25	sd	5.
7	1285.0	1284.7	464.7	.00	S85.00W	.00	.00	-2.0	-14.6	14.7	262.0	-14.6	.00	sd	5.
8	1313.0	1312.7	492.7	.30 .50	S85.00W S85.00W	01	07	-2.1	-14.7	14.8	262.0	-14.7 -14.8	.32	sd sd	5.
0	1334.0 1367.0	1333.7 1366.7	513.7 546.7	.35	S85.00W	01 02	15 24	-2.1 -2.1	-14.8 -15.1	15.0 15.2	262.1 262.1	-15.1	.14	sd	5. 5.
1	1397.0	1396.7	576.7	.23	S85.00W	01	15	-2.1	-15.2	15.4	262.1	-15.2	.12	sd	5.
2	1427.0	1426.7	606.7	.10	S85.00W	01	09	-2.1	-15.3	15.4		-15.3	.13	sd	5.
3 4	1454.0 1480.0	1453.7 1479.7	633.7 659.7	.18 .13	S85.00W S85.00W	01 01	07 07	-2.1 -2.1	-15.4 -15.4	15.5 15.6		-15.4 -15.4	.09	sd sd	5. 5.
5	1510.0	1509.7	689.7	.28	S85.00W	01	11	-2.1	-15.5	15.7		-15.5	.15	sd	5.
6	1539.0	1538.7	718.7	.35	S85.00W	01	16	-2.1	-15.7	15.8		-15.7	.07	sd	5.
7 8	1566.0 1594.0	1565.7 1593.7	7 4 5.7 773.7	.10 .19	S85.00W S85.00W	01 01	11 07	-2.2 -2.2	-15.8 -15.9	16.0 16.0		-15.8 -15.9	.28	sd sd	5. 5.
9	1616.0	1615.7	795.7		S85.00W	01	07	-2.2	-15.9	16.1		-15.9	.00	sd	5.
##	########	########	+######				#######			#######	#######	#######	##########	#####	#####
A	gip	Well Da	ita vers	us M easi	ured Depth	<u> </u>							16/0 F	02/01 Pag.	11:1
	1_	ter: SVEN1		TA VENE									i		
11		: SANV2	2 1R SAN	ITA VEN	ERE 1 (2	° Foro)									
			1^ 52	57.50	0" E										
В	etic Decl	: 10.00		und Leve	e: 360.0 e1: 810.0	00					_				
. [MEASURED (m)	DEPTH VERTICAL; (m)	MSL (m)			NORTH	EAST		EAST	DISPL.		TH.AXE	SEVERITY	TOOL TYPE 	
- '	728.0	_ '_	-92.3	.35	N 5.50W	*****	*****	-1.9	-14.3	14.4	262.2	-1.9	.66	ı	3.
8	737.0	736.7	-83.3	.80	N20.00W	.09	02	-1.9	-14.3	14.4	262.6	-1.9	1.56	mw	3.
9	745.0	744.7	-75.3		N13.00W	.13	04	-1.7	-14.3	14.4	263.1	-1.7	1.57	mw	3.
0	759.0 775.0	758.7 774.7	-61.3 -45.3	2.60 4.00	N 8.50W N 4.80W	.46 .92	08 10	-1.3 4	-14.4 -14.5	14.5 14.5	265.0 268.6	-1.3 4	3.01 2.65	mw mw	3. 3.
	801.0	800.6	-45.3 -19.4		N 4.80W N 1.50W	2.49	10 12	2.1	-14.5	14.5	278.3	2.1	3.48	mw	3.
1						3.59	-,11	5.7	-14.7	15.8	291.2	5.7	.68	mw	3.
1 2 3	832.0	831.4	11.4	6.30	N 2.10W										
1 2 3 4	832.0 859.0	858.3	38.3	4.30	N 1.00W	2.49	07	8.2	-14.8	16.9	299.0	8.2	2.22	mw	4.
1 2 3	832.0			4.30 4.10											

2	Agip	Well I	Data ver	sus Meas	sured Dept	h			, , ,	,			1 16,	/02/01 Pag.	11:15
Plat	tform/Clus	ter: SVE	VI SAI	NTA VENI	ERE 1										
Wel:		: SAN	73 1 SAI	NTA VENI	ERE 1 (3°	Foro)									
Wel:	lhead Coor														
Маст	netic Decl	LONG		2' 57.50 oj. Angl		74									
RKB	lecte beet	: 10.0		ound Lev											
								_							
N.		DEPTH		DRIFT		REL.COOR							DOG-LEG		UNCER
UR.	MEASURED (m)	(m)	MSL (m)		GEOG.	NORTH		NORTH	EAST				SEVERITY	ITYPE	
	, (m, j	(10.7	(1117)	(deg) 	(deg)	(m)	(m) !	(m)	(m)	(m) !	(deg)) (M) 	l(deg/30m) ı	1	(m)
8	525.0	524.7	-295.3	2.20	S77.00W	*****	******	-2.0	-14.1	14.2	261.9	13.5	.00	_'w	3.1
9	544.0	543.7	-276.3	2.50	S67.50W	24	74	-2.2	-14.8	15.0	261.4	14.3	.77	mw	3.2
10	559.0	558.7	-261.3	3.50	S61.00W	35	70	-2.6	-15.5	15.7	260.5	15.1	2.11		3.2
11 12	576.0 604.0	575.7 603.5	-244.3 -216.5	5.40 7.70	S53.60W S48.80W	73 -2.02	-1.10 -2.47	-3.3 -5.3	-16.6 -1 9.1	16.9 19.8	258.7 254.4	16.4 19.5	3.50 2.53		3.3
13	632.0	631.2	-188.8	7.10	S46.00W	-2.44	-2.66	-7.8	-21.7	23.1	250.3	22.9	.75		3.4
14	653.0	652.1	-167.9	6.60	S45.00W	-1.75	-1.79	-9.5	-23.5	25.4	248.0	25.3	.73		3.5
15	671.0	670.0	-150.0	6.20	S44.00W	-1.43	-1.41	-11.0	~24.9	27.2	246.3	27.2	.69		3.5
16	672.0	671.0	-149.0	6.50	S44.00W	08	08	-11.0	-25.0	27.3	246.2	27.3	9.00		3.5
17 18	690.0 717.0	688.9 715.8	-131.1 -104.2	4.90 4.30	S43.20W S41.20W	-1.29 -1.60	-1.23 -1.46	-12.3 -13.9	-26.2 -27.7	29.0 31.0	244.8	29.0 31.0	2.67		3.6 3.6
19	737.0	735.7	-84.3	4.60	S40.00W	-1.18	-1.01	-15.1	-28.7	32.4	243.3	32.4	.47		3.7
20	754.0	752.7	-67.3	4.70	S34.10W	-1.10	83	-16.2	-29.5	33.7	241.2	33.7	.86		3.7
21	774.0	772.6	-47.4	4.60	S31.70W	-1.36	88	-17.6	-30.4	35.1	240.0	35.1	.33		3.8
22	792.0	790.6	-29.4	4.70	S30.30W	-1.25	75	-18.8	-31.2	36.4	238.9	36.3	. 25		3.8
23 24	811.0 830.0	809.5 828.4	-10.5 8.4	4.36	S30.30W S30.30W	-1.30 -1.22	76 72	-20.1 -21.3	-31.9 -32.6	37.7 39.0	237.8 236.8	37.5 38.7	.54		3.9 3.9
25	851.0	849.4	29.4	4.58	S30.30W	-1.39	81	-22.7	-33.5	40.4	235.8	40.1	.54		4.0
26	872.0	870.3	50.3	3.54	S30.30W	-1.28	75	-24.0	-34.2	41.8	234.9	41.3	1.49		4.0
27	891.0	889.3	69.3	2.56	S30.30W	~.87	51	-24.9	-34.7	42.7	234.4	42.1	1.55		4.1
28	911.0	909.3	89.3	1.46	\$30.30W	61	35	-25.5	-35.1	43.4	234.0	42.7	1.65		4.1
29 30	931.0 942.0	929.3 940.3	109.3 120.3	.50	S30.30W S30.30W	30 04	17 02	-25.8 -25.8	-35.2 -35.3	43.7 43.7	233.8 233.8	43.0 43.1	1.44		4.2
31	971.0	969.3	149.3	.00	S30.30W	.00	.00	-25.8	-35.3	43.7	233.8	43.1	.00		4.3
32	1000.0	998.3	178.3	.00	S30.30W	.00	,00	-25.8	-35.3	43.7	233.8	43.1	.00		4.4
33	1029.0	1027.3	207.3	.00	S30.30W	.00	.00	-25.8	-35.3	43.7	233.8	43.1	.00		4.4
34	1056.0	1054.3	234.3	.00	S30.30W	.00	.00	-25.8	-35.3	43.7	233.8	43.1	.00		4.5
35 36	1085.0 1115.0	1083.3 1113.3	263.3 293.3	.00	S30.30W S30.30W	.00	.00	-25.8 -25.8	-35.3 -35.3	43.7 43.7	233.8 233.8	43.1 43.1	.00		4.6
37	1114.0	1142.3	322.3	.00	S30.30W	.00	.00	-25.8	-35.3	43.7	233.8	43.1	.00		4.7
38	1202.0	1200.3	380.3	.00	S30.30W	.00	.00	-25.8	-35.3	43.7	233.8	43.1	.00	sd	4.9
39	1220.0	1218.3	398.3	.00	\$30.30W	.00	.00	-25.8	-35.3	43.7	233.8	43.1	.00		4.9
40	1241.0	1239.3	419.3	.00	S30.30W	.00	.00	-25.8	-35.3	43.7	233.8	43.1	.00		5.00 5.20
41 42	1324.0 1459.0	1322.3	502.3 637.3	.00 .25	S30.30W S30.30W	.00 25	.00 15	-25.8 -26.1	-35.3 -35.4	43.7 44.0	233.8	43.1 43.3	.00		5.5
43	1484.0	1482.3	662.3	.50	S30.30W	14	08	-26.2	-35.5	44.1	233.5	43.4	.30		5.63
44	1495.0	1493.3	673.3	.25	S30.30W	06	04	-26.3	-35.5	44.2	233.5	43.5	. 68	sd	5.6
45	1505.0	1503.3	683.3	.00	S30.30W	02	01	-26.3	-35.5	44.2	233.5	43.5	.75		5.6
46	2130.0	2128.3	1308.3	.10	S30.30W	48	28 67.80	-26.8 -56.8	-35.8 32.0	44.7 65.2	233.2 150.6	44.0 -3.5	.00		7.2° 8.9
47 48	2740.6 2750.8	2732.8 2742.7	1912.8 1922.7	14.00 13.90	S66.50E S65.10E	-30.06 -1.01	2.24	-56.6 -57.9	34.2	67.2	149.4	-5.1	1.04		9.0
49	2769.4				S65.30E	-1.88	4.07	-59.7	38.3	70.9	147.3	-7.9	.18		9.0
50	2797.3				S64.20E	-2.90	6.15	-62.6	44.4	76.8		-12.1	.36		9.1
51	2825.7				S65.50E	-2.98	6.35	-65.6	50.8	83.0		-16.5 -25.6	.40		9.2 9.4
52 53	2882.7 2939.7				S65.30E S62.80E	-6.00 -6.50	13.11 13.35	-71.6 -78.1	63.9 77.2	96.0 109.9		-25.6 -34.7	.26		9.4
54	2939.7				S63.30E	-6.89	13.56	-85.0	90.8	124.4		-43.8	.17		9.8
55	3053.3				S62.80E	-6.97	13.71	-92.0	104.5	139.2	131.4	-53.0	.22	sd	10.0
56	3110.5	3089.9			S63.50E	-7.16	14.15	-99.1	118.7	154.6		-62.6	.15		10.2
57	3167.9				S61.40E	-7.57	14.49	-106.7	133.2	170.6		-72.2 -79.6	.48		10.4
58 59	3205.5 3256.9				S62.60E S62.80E	-5.15 -7.17	9.68 13.89	-111.9 -119.0	142.8 156.7	181.4 196.8		-78.6 -87.9	.29 .82		10.6
60	3290.7				S63.60E	-4.87		-123.9	166.4	207.4		-94.4	.50		10.9
61	3384.0				S59.60E	-14.60		-138.5	193.3	237.8	125.6	-112.1	.46		11.2
62	3490.0	3449.8	2629.8	19.80	S55.60E	-19.10	30.07	-157.6	223.4	273.4		-130.6	.39		11.6
63	3517.0				S54.80E	-5.27		-162.9	231.0	282.6		-135.1	.54		11.7
64 65	3580.0 3688.0				S54.80E S54.80E	-12.72 -22.11		-175.6 -197.7	249.0 280.4	304.7 343.0		-145.6 -164.0	.29		12.02
	########														

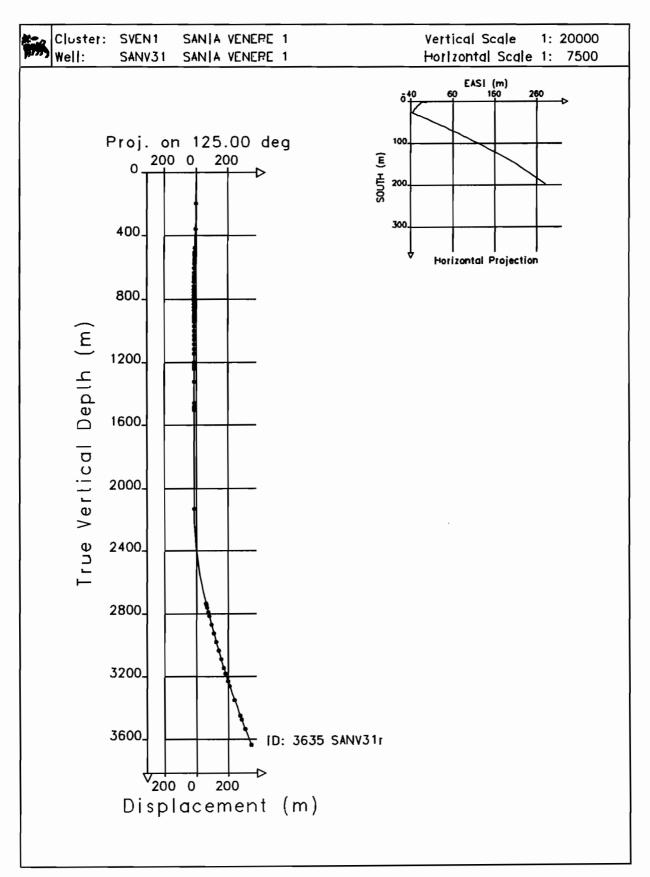


Fig. 16

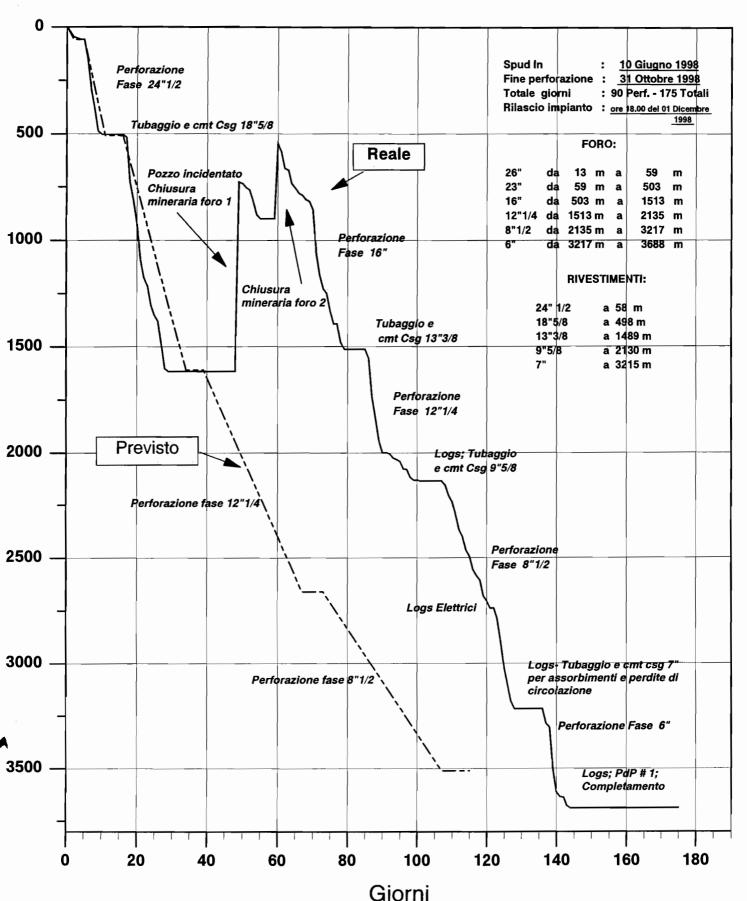


DIAGRAMMA DI AVANZAMENTO GIORNALIERO

S. VENERE 1

Fig. 17

Profondità

